Yan Zhang, Liyi Zou, Xiaodan Li, Long Guo, Baoguang Hu, Hua Ye, Yi Liu
{"title":"铁代谢、铁变态反应和疾病中的 SLC40A1:综述。","authors":"Yan Zhang, Liyi Zou, Xiaodan Li, Long Guo, Baoguang Hu, Hua Ye, Yi Liu","doi":"10.1002/wsbm.1644","DOIUrl":null,"url":null,"abstract":"<p><p>Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLC40A1 in iron metabolism, ferroptosis, and disease: A review.\",\"authors\":\"Yan Zhang, Liyi Zou, Xiaodan Li, Long Guo, Baoguang Hu, Hua Ye, Yi Liu\",\"doi\":\"10.1002/wsbm.1644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.</p>\",\"PeriodicalId\":29896,\"journal\":{\"name\":\"WIREs Mechanisms of Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1644\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1644","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
SLC40A1 in iron metabolism, ferroptosis, and disease: A review.
Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.