WIREs Mechanisms of Disease最新文献

筛选
英文 中文
Potential role of exitron-containing homeobox genes in cancer. 内含外显子的同源盒基因在癌症中的潜在作用。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 DOI: 10.1002/wsbm.1606
Joice de Faria Poloni, Bruno César Feltes
{"title":"Potential role of exitron-containing homeobox genes in cancer.","authors":"Joice de Faria Poloni,&nbsp;Bruno César Feltes","doi":"10.1002/wsbm.1606","DOIUrl":"https://doi.org/10.1002/wsbm.1606","url":null,"abstract":"<p><p>Homeobox genes are protagonists in developmental and cancer biology, making comprehending their regulation pivotal in multiple molecular pathways. Exitrons, also known as intronic exons, are new players in the transcriptional organization, providing additional splicing variants whose functions are still vastly unknown. Exitron splicing sites were identified in eight homeobox genes, which has not been yet debated in the scientific literature. Due to the intimate connection between homeobox genes and tumorigenesis, it is worth investing more time in understanding how these less explored exitron-containing transcriptional isoforms could play a role in modulating the homeobox gene's biological functions. The perspectives devised in this article are meant to instigate fresh debates on how the transcriptional variants retaining exitrons identified in the human homeobox genes HOXA1, HOXA9, HOXD8, NKX3.1, and DLX6 can be examined in the context of tumorigenesis. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of STING signaling in central nervous system infection and neuroinflammatory disease. STING信号在中枢神经系统感染和神经炎性疾病中的作用。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 DOI: 10.1002/wsbm.1597
Lauren E Fritsch, Colin Kelly, Alicia M Pickrell
{"title":"The role of STING signaling in central nervous system infection and neuroinflammatory disease.","authors":"Lauren E Fritsch,&nbsp;Colin Kelly,&nbsp;Alicia M Pickrell","doi":"10.1002/wsbm.1597","DOIUrl":"https://doi.org/10.1002/wsbm.1597","url":null,"abstract":"<p><p>The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/42/nihms-1868577.PMC10175194.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
In vitro maturation of oocytes as a laboratory approach to polycystic ovarian syndrome (PCOS): From oocyte to embryo. 卵母细胞体外成熟是治疗多囊卵巢综合征(PCOS)的一种实验室方法:从卵母细胞到胚胎。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 Epub Date: 2023-02-13 DOI: 10.1002/wsbm.1600
Patricia Rodrigues, Monica Marques, Juan Aibar Manero, Maria D Marujo, Maria José Carvalho, Carlos E Plancha
{"title":"In vitro maturation of oocytes as a laboratory approach to polycystic ovarian syndrome (PCOS): From oocyte to embryo.","authors":"Patricia Rodrigues, Monica Marques, Juan Aibar Manero, Maria D Marujo, Maria José Carvalho, Carlos E Plancha","doi":"10.1002/wsbm.1600","DOIUrl":"10.1002/wsbm.1600","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting women of reproductive age, which in some case leads to infertility. This disorder is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Infertile PCOS women that need in vitro fertilization (IVF) have greater risk of ovarian hyperstimulation syndrome (OHSS) if conventional ovarian stimulation is used. In vitro oocyte maturation (IVM) is an alternative technique that prevents OHSS in infertile PCOS women. In the last decade, IVM protocols have improved, particularly with the development of biphasic IVM culture accounting for better pregnancy and live birth rates. This technique has been extended to other treatments like, fertility preservation, when patients have no time, or a contra-indication for ovarian stimulation, and poor responders. In this review, we will discuss IVM as a viable option for PCOS infertile patients. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors Reproductive System Diseases > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10055629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. 癌细胞线粒体膜电位的胞内和微环境调控。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 Epub Date: 2023-01-03 DOI: 10.1002/wsbm.1595
Hydari Masuma Begum, Keyue Shen
{"title":"Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells.","authors":"Hydari Masuma Begum, Keyue Shen","doi":"10.1002/wsbm.1595","DOIUrl":"10.1002/wsbm.1595","url":null,"abstract":"<p><p>Cancer cells have an abnormally high mitochondrial membrane potential (ΔΨ<sub>m</sub> ), which is associated with enhanced invasive properties in vitro and increased metastases in vivo. The mechanisms underlying the abnormal ΔΨ<sub>m</sub> in cancer cells remain unclear. Research on different cell types has shown that ΔΨ<sub>m</sub> is regulated by various intracellular mechanisms such as by mitochondrial inner and outer membrane ion transporters, cytoskeletal elements, and biochemical signaling pathways. On the other hand, the role of extrinsic, tumor microenvironment (TME) derived cues in regulating ΔΨ<sub>m</sub> is not well defined. In this review, we first summarize the existing literature on intercellular mechanisms of ΔΨ<sub>m</sub> regulation, with a focus on cancer cells. We then offer our perspective on the different ways through which the microenvironmental cues such as hypoxia and mechanical stresses may regulate cancer cell ΔΨ<sub>m</sub> . This article is categorized under: Cancer > Environmental Factors Cancer > Biomedical Engineering Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in biomarker discovery using circulating cell-free DNA for early detection of hepatocellular carcinoma. 利用循环无细胞 DNA 发现生物标记物以早期检测肝细胞癌的进展。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 Epub Date: 2023-01-25 DOI: 10.1002/wsbm.1598
Mingjun Liu, Zhou Zhang, Wei Zhang, Song-Mei Liu
{"title":"Advances in biomarker discovery using circulating cell-free DNA for early detection of hepatocellular carcinoma.","authors":"Mingjun Liu, Zhou Zhang, Wei Zhang, Song-Mei Liu","doi":"10.1002/wsbm.1598","DOIUrl":"10.1002/wsbm.1598","url":null,"abstract":"<p><p>The past several decades have witnessed unprecedented progress in basic and clinical cancer research, and our understanding of the molecular mechanisms and pathogenesis of cancers have been greatly improved. More recently, with the availability of high-throughput sequencing and profiling platforms as well as sophisticated analytical tools and high-performance computing capacity, there have been tremendous advances in the development of diagnostic approaches in clinical oncology, especially the discovery of novel biomarkers for cancer early detection. Although tissue biopsy-based pathology has been the \"gold standard\" for cancer diagnosis, notable limitations such as the risk due to invasiveness and the bias due to intra-tumoral heterogeneity have limited its broader applications in oncology (e.g., screening, regular disease monitoring). Liquid biopsy analysis that exploits the genetic and epigenetic information contained in DNA/RNA materials from body fluids, particularly circulating cell-free DNA (cfDNA) in the blood, has been an intriguing alternative approach because of advantageous features such as sampling convenience and minimal invasiveness. Taking advantage of innovative enabling technologies, cfDNA has been demonstrated for its clinical potential in cancer early detection, including hepatocellular carcinoma (HCC), the most common liver cancer that causes serious healthcare burden globally. Hereby, we reviewed the current advances in cfDNA-based approaches for cancer biomarker discovery, with a focus on recent findings of cfDNA-based early detection of HCC. Future clinical investigations and trials are warranted to further validate these approaches for early detection of HCC, which will contribute to more effective prevention, control, and intervention strategies with the ultimate goal of reducing HCC-associated mortality. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling. 白细胞介素-17 作为从急性炎症到慢性炎症的时空桥梁:来自计算模型的新见解。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-05-01 Epub Date: 2023-01-29 DOI: 10.1002/wsbm.1599
Ashti M Shah, Ruben Zamora, Yoram Vodovotz
{"title":"Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling.","authors":"Ashti M Shah, Ruben Zamora, Yoram Vodovotz","doi":"10.1002/wsbm.1599","DOIUrl":"10.1002/wsbm.1599","url":null,"abstract":"<p><p>A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 15, Issue 2 封面图片,第15卷,第2期
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-03-14 DOI: 10.1002/wsbm.1605
{"title":"Cover Image, Volume 15, Issue 2","authors":"","doi":"10.1002/wsbm.1605","DOIUrl":"https://doi.org/10.1002/wsbm.1605","url":null,"abstract":"The cover image is based on the Advanced Review <i>Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases</i> by Kun Meng et al., https://doi.org/10.1002/wsbm.1587.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human globozoospermia-related genes and their role in acrosome biogenesis. 人类球形精子症相关基因及其在顶体生物发生中的作用。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-03-01 DOI: 10.1002/wsbm.1589
Ricardo D Moreno
{"title":"Human globozoospermia-related genes and their role in acrosome biogenesis.","authors":"Ricardo D Moreno","doi":"10.1002/wsbm.1589","DOIUrl":"https://doi.org/10.1002/wsbm.1589","url":null,"abstract":"<p><p>The mammalian acrosome is a secretory vesicle attached to the sperm nucleus whose fusion with the overlying plasma membrane is required to achieve fertilization. Acrosome biogenesis starts during meiosis, but it lasts through the entire process of haploid cell differentiation (spermiogenesis). Acrosome biogenesis is a stepwise process that involves membrane traffic from the Golgi apparatus, but it also seems that the lysosome/endosome system participates in this process. Defective sperm head morphology is accompanied by defective acrosome shape and function, and patients with these characteristics are infertile or subfertile. The most extreme case of acrosome biogenesis failure is globozoospermia syndrome, which is primarily characterized by the presence of round-headed spermatozoa without acrosomes with cytoskeleton defects around the nucleus and infertility. Several genes participating in acrosome biogenesis have been uncovered using genetic deletions in mice, but only a few of them have been found to be deleted or modified in patients with globozoospermia. Understanding acrosome biogenesis is crucial to uncovering the molecular basis of male infertility and developing new diagnostic tools and assisted reproductive technologies that may help infertile patients through more effective treatment techniques. This article is categorized under: Reproductive System Diseases > Environmental Factors Infectious Diseases > Stem Cells and Development Reproductive System Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pathogenesis mechanisms of phytopathogen effectors. 植物病原菌效应物的发病机制。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-03-01 DOI: 10.1002/wsbm.1592
Lifan Sun, Xiaoyun Wu, Jian Diao, Jie Zhang
{"title":"Pathogenesis mechanisms of phytopathogen effectors.","authors":"Lifan Sun,&nbsp;Xiaoyun Wu,&nbsp;Jian Diao,&nbsp;Jie Zhang","doi":"10.1002/wsbm.1592","DOIUrl":"https://doi.org/10.1002/wsbm.1592","url":null,"abstract":"<p><p>Plants commonly face the threat of invasion by a wide variety of pathogens and have developed sophisticated immune mechanisms to defend against infectious diseases. However, successful pathogens have evolved diverse mechanisms to overcome host immunity and cause diseases. Different cell structures and unique cellular organelles carried by plant cells endow plant-specific defense mechanisms, in addition to the common framework of innate immune system shared by both plants and animals. Effectors serve as crucial virulence weapons employed by phytopathogens to disarm the plant immune system and promote infection. Here we summarized the many diverse strategies by which phytopathogen effectors overcome plant defense and prospected future perspectives. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models. 利用数学模型优化外周神经局部给药的视角。
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2023-03-01 Epub Date: 2023-01-09 DOI: 10.1002/wsbm.1593
Simao Laranjeira, Victoria H Roberton, James B Phillips, Rebecca J Shipley
{"title":"Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models.","authors":"Simao Laranjeira, Victoria H Roberton, James B Phillips, Rebecca J Shipley","doi":"10.1002/wsbm.1593","DOIUrl":"10.1002/wsbm.1593","url":null,"abstract":"<p><p>Drug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial-mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical-experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信