Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister
{"title":"A One Health approach to overcoming fungal disease and antifungal resistance.","authors":"Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister","doi":"10.1002/wsbm.1610","DOIUrl":"https://doi.org/10.1002/wsbm.1610","url":null,"abstract":"<p><p>The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 4","pages":"e1610"},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9847780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of multiplex imaging techniques to characterize tuberculous granuloma heterogeneity.","authors":"Ruiyao Xu, Wei Xiao, Guanggui Ding, Jiang Zeng, Hui Liu, Yi Cai, Xinchun Chen","doi":"10.1002/wsbm.1601","DOIUrl":"https://doi.org/10.1002/wsbm.1601","url":null,"abstract":"<p><p>Caseous granulomas are pathological hallmarks of tuberculosis (TB), and increasing evidence suggests that TB granuloma composition is highly temporally and spatially heterogenous in both animal models and humans. Traditional pathological techniques are limited in their ability to reveal the heterogeneity present in TB granulomas. Multiplex tissue imaging tools combined with powerful, high resolution spatial analysis have enabled the detection of various cell phenotypes, aiding in the visualization of the granuloma complex and revealing the interactions between immune cells and nonimmune cells. This updated understanding of tuberculous granuloma heterogeneity offers vital insights for researchers aiming to uncover the immunoregulatory mechanisms underlying granuloma formation during TB pathogenesis. More detailed granuloma classification systems will also be of use for precision medicine, and for identifying biological targets for host-directed therapeutics in TB patients. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Biomedical Engineering Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1601"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclooxygenase-2 as a therapeutic target against human breast cancer: A comprehensive review.","authors":"Ankita Sahu, Khalid Raza, Dibyabhaba Pradhan, Arun Kumar Jain, Saurabh Verma","doi":"10.1002/wsbm.1596","DOIUrl":"https://doi.org/10.1002/wsbm.1596","url":null,"abstract":"<p><p>Cyclooxygenase-2 (COX-2) is a key aspect of the physiology and pathogenesis of various cancer types. Overexpression of this enzyme is responsible for the elevated prostaglandin production and characteristic feature of breast cancer. Inhibition of COX-2 derived prostanoids facilitates anti-inflammatory, analgesic, and antipyretic effects of non-steroid anti-inflammation drugs. The overexpression of COX-2 is associated with inflammation, pain, and fever. The present study provides the updated relevant literature describing the role of well-characterized isoforms of cyclooxygenase with particular emphasis on COX-2, mechanism of action, the effect of the drug, combinatorial drugs, and microarray-based differential expression analysis and network analysis. We have discussed the currently used combinatorial treatments and their challenges in breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1596"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10056622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential role of exitron-containing homeobox genes in cancer.","authors":"Joice de Faria Poloni, Bruno César Feltes","doi":"10.1002/wsbm.1606","DOIUrl":"https://doi.org/10.1002/wsbm.1606","url":null,"abstract":"<p><p>Homeobox genes are protagonists in developmental and cancer biology, making comprehending their regulation pivotal in multiple molecular pathways. Exitrons, also known as intronic exons, are new players in the transcriptional organization, providing additional splicing variants whose functions are still vastly unknown. Exitron splicing sites were identified in eight homeobox genes, which has not been yet debated in the scientific literature. Due to the intimate connection between homeobox genes and tumorigenesis, it is worth investing more time in understanding how these less explored exitron-containing transcriptional isoforms could play a role in modulating the homeobox gene's biological functions. The perspectives devised in this article are meant to instigate fresh debates on how the transcriptional variants retaining exitrons identified in the human homeobox genes HOXA1, HOXA9, HOXD8, NKX3.1, and DLX6 can be examined in the context of tumorigenesis. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1606"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of STING signaling in central nervous system infection and neuroinflammatory disease.","authors":"Lauren E Fritsch, Colin Kelly, Alicia M Pickrell","doi":"10.1002/wsbm.1597","DOIUrl":"https://doi.org/10.1002/wsbm.1597","url":null,"abstract":"<p><p>The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1597"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/42/nihms-1868577.PMC10175194.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in biomarker discovery using circulating cell-free DNA for early detection of hepatocellular carcinoma.","authors":"Mingjun Liu, Zhou Zhang, Wei Zhang, Song-Mei Liu","doi":"10.1002/wsbm.1598","DOIUrl":"10.1002/wsbm.1598","url":null,"abstract":"<p><p>The past several decades have witnessed unprecedented progress in basic and clinical cancer research, and our understanding of the molecular mechanisms and pathogenesis of cancers have been greatly improved. More recently, with the availability of high-throughput sequencing and profiling platforms as well as sophisticated analytical tools and high-performance computing capacity, there have been tremendous advances in the development of diagnostic approaches in clinical oncology, especially the discovery of novel biomarkers for cancer early detection. Although tissue biopsy-based pathology has been the \"gold standard\" for cancer diagnosis, notable limitations such as the risk due to invasiveness and the bias due to intra-tumoral heterogeneity have limited its broader applications in oncology (e.g., screening, regular disease monitoring). Liquid biopsy analysis that exploits the genetic and epigenetic information contained in DNA/RNA materials from body fluids, particularly circulating cell-free DNA (cfDNA) in the blood, has been an intriguing alternative approach because of advantageous features such as sampling convenience and minimal invasiveness. Taking advantage of innovative enabling technologies, cfDNA has been demonstrated for its clinical potential in cancer early detection, including hepatocellular carcinoma (HCC), the most common liver cancer that causes serious healthcare burden globally. Hereby, we reviewed the current advances in cfDNA-based approaches for cancer biomarker discovery, with a focus on recent findings of cfDNA-based early detection of HCC. Future clinical investigations and trials are warranted to further validate these approaches for early detection of HCC, which will contribute to more effective prevention, control, and intervention strategies with the ultimate goal of reducing HCC-associated mortality. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1598"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells.","authors":"Hydari Masuma Begum, Keyue Shen","doi":"10.1002/wsbm.1595","DOIUrl":"10.1002/wsbm.1595","url":null,"abstract":"<p><p>Cancer cells have an abnormally high mitochondrial membrane potential (ΔΨ<sub>m</sub> ), which is associated with enhanced invasive properties in vitro and increased metastases in vivo. The mechanisms underlying the abnormal ΔΨ<sub>m</sub> in cancer cells remain unclear. Research on different cell types has shown that ΔΨ<sub>m</sub> is regulated by various intracellular mechanisms such as by mitochondrial inner and outer membrane ion transporters, cytoskeletal elements, and biochemical signaling pathways. On the other hand, the role of extrinsic, tumor microenvironment (TME) derived cues in regulating ΔΨ<sub>m</sub> is not well defined. In this review, we first summarize the existing literature on intercellular mechanisms of ΔΨ<sub>m</sub> regulation, with a focus on cancer cells. We then offer our perspective on the different ways through which the microenvironmental cues such as hypoxia and mechanical stresses may regulate cancer cell ΔΨ<sub>m</sub> . This article is categorized under: Cancer > Environmental Factors Cancer > Biomedical Engineering Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1595"},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Rodrigues, Monica Marques, Juan Aibar Manero, Maria D Marujo, Maria José Carvalho, Carlos E Plancha
{"title":"In vitro maturation of oocytes as a laboratory approach to polycystic ovarian syndrome (PCOS): From oocyte to embryo.","authors":"Patricia Rodrigues, Monica Marques, Juan Aibar Manero, Maria D Marujo, Maria José Carvalho, Carlos E Plancha","doi":"10.1002/wsbm.1600","DOIUrl":"10.1002/wsbm.1600","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting women of reproductive age, which in some case leads to infertility. This disorder is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Infertile PCOS women that need in vitro fertilization (IVF) have greater risk of ovarian hyperstimulation syndrome (OHSS) if conventional ovarian stimulation is used. In vitro oocyte maturation (IVM) is an alternative technique that prevents OHSS in infertile PCOS women. In the last decade, IVM protocols have improved, particularly with the development of biphasic IVM culture accounting for better pregnancy and live birth rates. This technique has been extended to other treatments like, fertility preservation, when patients have no time, or a contra-indication for ovarian stimulation, and poor responders. In this review, we will discuss IVM as a viable option for PCOS infertile patients. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors Reproductive System Diseases > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1600"},"PeriodicalIF":4.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10055629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling.","authors":"Ashti M Shah, Ruben Zamora, Yoram Vodovotz","doi":"10.1002/wsbm.1599","DOIUrl":"10.1002/wsbm.1599","url":null,"abstract":"<p><p>A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 3","pages":"e1599"},"PeriodicalIF":4.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 15, Issue 2","authors":"","doi":"10.1002/wsbm.1605","DOIUrl":"https://doi.org/10.1002/wsbm.1605","url":null,"abstract":"The cover image is based on the Advanced Review <i>Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases</i> by Kun Meng et al., https://doi.org/10.1002/wsbm.1587.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}