Small SciencePub Date : 2024-07-10DOI: 10.1002/smsc.202470024
Tahir, Guilherme C. Concas, Mariana Gisbert, Marco Cremona, Fernando Lazaro, Marcelo Eduardo H. Maia da Costa, Suellen D. T. De Barros, Ricardo Q. Aucélio, Tatiana Saint Pierre, José Marcus Godoy, Diogo Mendes, Gino Mariotto, Nicola Daldosso, Francesco Enrichi, Alexandre Cuin, Aldebarã F. Ferreira, Walter M. de Azevedo, Geronimo Perez, Celso SantAnna, Braulio Soares Archanjo, Yordy E. Licea Fonseca, Andre L. Rossi, Francis L. Deepak, Rajwali Khan, Quaid Zaman, Sven Reichenberger, Theo Fromme, Giancarlo Margheri, José R. Sabino, Gabriella Fibbi, Mario Del Rosso, Anastasia Chillà, Francesca Margheri, Anna Laurenzana, Tommaso Del Rosso
{"title":"Pulsed-Laser-Driven CO2 Reduction Reaction for the Control of the Photoluminescence Quantum Yield of Organometallic Gold Nanocomposites","authors":"Tahir, Guilherme C. Concas, Mariana Gisbert, Marco Cremona, Fernando Lazaro, Marcelo Eduardo H. Maia da Costa, Suellen D. T. De Barros, Ricardo Q. Aucélio, Tatiana Saint Pierre, José Marcus Godoy, Diogo Mendes, Gino Mariotto, Nicola Daldosso, Francesco Enrichi, Alexandre Cuin, Aldebarã F. Ferreira, Walter M. de Azevedo, Geronimo Perez, Celso SantAnna, Braulio Soares Archanjo, Yordy E. Licea Fonseca, Andre L. Rossi, Francis L. Deepak, Rajwali Khan, Quaid Zaman, Sven Reichenberger, Theo Fromme, Giancarlo Margheri, José R. Sabino, Gabriella Fibbi, Mario Del Rosso, Anastasia Chillà, Francesca Margheri, Anna Laurenzana, Tommaso Del Rosso","doi":"10.1002/smsc.202470024","DOIUrl":"https://doi.org/10.1002/smsc.202470024","url":null,"abstract":"<b>CO<sub>2</sub> Reduction Reaction</b>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-10DOI: 10.1002/smsc.202400184
Guoliang Chen, Lei Ge, Yizhu Kuang, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang
{"title":"In Situ Growth of Hierarchical Silver Sub-Nanosheets on Zinc Nanosheets-Based Hollow Fiber Gas-Diffusion Electrodes for Electrochemical CO2 Reduction to CO","authors":"Guoliang Chen, Lei Ge, Yizhu Kuang, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang","doi":"10.1002/smsc.202400184","DOIUrl":"https://doi.org/10.1002/smsc.202400184","url":null,"abstract":"Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) is an effective strategy to mitigate carbon emission effects and store renewable electricity in value-added feedstocks, but it still suffers low production rate and current density. A nanostructured catalyst offers opportunities to enhance CO<sub>2</sub>RR activity by contributing numerous active sites and promoting charge transfer. Herein, a Cu hollow fiber gas diffusion electrode (HFGDE) with silver sub-nanosheets on a zinc nanosheet structure to produce CO is reported. Compared to the HFGDE only possessed zinc nanosheet structure, the as-prepared HFGDE with hierarchical sub-nano AgZn bimetal nanosheets exhibits a twice-partial current density of CO and a CO production rate at the applied potential −1.3 V (versus reversible hydrogen electrode). The unique Ag sub-nanosheets interconnected Zn nanosheets provide multiple charge transfer channels, and the synergistic effect between Ag and Zn improves the adsorption binding energy of COOH* intermediate, resulting in a lower charge transfer resistance and fast CO<sub>2</sub>RR kinetics to produce CO. This research demonstrates the high potential of nanoengineering electrocatalysts for HFGDE to achieve highly efficient CO<sub>2</sub> reduction.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-10DOI: 10.1002/smsc.202470023
Pillalamarri Srikrishnarka, Joonas Haapasalo, Juan P. Hinestroza, Zhipei Sun, Nonappa
{"title":"Wearable Sensors for Physiological Condition and Activity Monitoring","authors":"Pillalamarri Srikrishnarka, Joonas Haapasalo, Juan P. Hinestroza, Zhipei Sun, Nonappa","doi":"10.1002/smsc.202470023","DOIUrl":"https://doi.org/10.1002/smsc.202470023","url":null,"abstract":"<b>Wearable Sensors</b>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-10DOI: 10.1002/smsc.202400135
Marcel Heidbüchel, Aurora Gomez-Martin, Lars Frankenstein, Ardavan Makvandi, Martin Peterlechner, Gerhard Wilde, Martin Winter, Johannes Kasnatscheew
{"title":"Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material","authors":"Marcel Heidbüchel, Aurora Gomez-Martin, Lars Frankenstein, Ardavan Makvandi, Martin Peterlechner, Gerhard Wilde, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/smsc.202400135","DOIUrl":"https://doi.org/10.1002/smsc.202400135","url":null,"abstract":"Minor amounts of tungsten (W) are well known to improve Ni-rich layered oxide-based cathode active materials (CAMs) for Li ion batteries. Herein, W impacts are validated and compared for varied concentrations and incorporation routes in aqueous media for LiNi<sub>0.90</sub>Co<sub>0.06</sub>Mn<sub>0.04</sub>O<sub>2</sub> (NCM90-6-4), either via modification of a precursor Ni<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub><i>z</i></sub>(OH)<sub>2</sub> (pCAM) within a sol–gel reaction or directly during synthesis, i.e., either via an W-based educt or during co-precipitation in a continuously operated Couette–Taylor reactor. In particular, the sol–gel modification is shown to be beneficial and reveals >500 cycles for ≈80% state-of-health NCM90-6-4||graphite cells. It can be related to homogeneously W-modified surface as well as smaller and elongated primary particles, whereas the latter are suggested to better compensate anisotropic lattice stress and decrease amount of microcracks, consequently minimizing further rise in surface area and the accompanied failure cascades (e.g., phase changes, metal dissolution, and crosstalk). Moreover, the different incorporation routes are shown to reveal different outcomes and demonstrate the complexity and sensitivity of W incorporation.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in the Synthesis and Application of Monolayer 2D Metal-Organic Framework Nanosheets","authors":"Yu Wang, Juan Ma, Fei Jin, Tong Li, Negar Javanmardi, Yuyuan He, Guanzhou Zhu, Siwei Zhang, Jian-Da Xu, Ting Wang, Zhang-Qi Feng","doi":"10.1002/smsc.202400132","DOIUrl":"https://doi.org/10.1002/smsc.202400132","url":null,"abstract":"Monolayer 2D metal-organic framework (MOF) nanosheets, characterized by abundant exposed active sites and tunable structure and function (such as altering the metal nodes or organic ligands), have emerged as a pivotal class of 2D materials, demonstrating irreplaceable applications across diverse research domains in materials and chemistry. This review provides a comprehensive survey of the latest research progress in the synthesis of monolayer 2D MOF nanosheets. Specifically, recent synthetic strategies, including top-down and bottom-up methods, are delved and their applications in gas separation, catalysis, sensing platforms, and energy storage are explored. Additionally, the challenges faced in the investigation of monolayer 2D MOF nanosheets are elucidated and future opportunities for these materials as a novel generation of 2D materials are outlined.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-09DOI: 10.1002/smsc.202400123
Jonathan Y. C. Ting, George Opletal, Amanda S. Barnard
{"title":"Fractal Characterization of Simulated Metal Nanocatalysts in 3D","authors":"Jonathan Y. C. Ting, George Opletal, Amanda S. Barnard","doi":"10.1002/smsc.202400123","DOIUrl":"https://doi.org/10.1002/smsc.202400123","url":null,"abstract":"The surface roughness of metal nanoparticles is known to be influential toward their properties, but the quantification of surface roughness is challenging. Given the recent availability of large-scale simulated data and tools for the computation of the box-counting dimension of simulated atomistic objects, researchers are now enabled to study the connections between the surface roughness of metal nanoparticles and their properties. Herein, the relationships between the fractal box-counting dimension of metal nanoparticle surfaces and structural features relevant to experimental and computational studies are investigated, providing actionable insights for the manufacturing of rough nanoparticles. This approach differs from conventional concepts of roughness, but introduces a possible indicator for their functionalities such as catalytic performance that was not previously accessible. It is found that, while it remains difficult to consistently correlate the dimension with the catalytic activity of surface facets, matching trends with their surface energy, thermodynamic stability, and number of bond vacancy are observed. This highlights the potential of fractal box-counting dimensions to rationalize catalytic activity trends among metal nanoparticles, and opens up opportunities for the design of nanocatalysts with better performance via surface engineering.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface Modification of Mesoporous Silica Nanoparticles as a Means to Introduce Inherent Cancer-Targeting Ability in a 3D Tumor Microenvironment","authors":"Neeraj Prabhakar, Erica Långbacka, Ezgi Özliseli, Jesse Mattsson, Alaa Mahran, Ilida Suleymanova, Cecilia Sahlgren, Jessica M. Rosenholm, Malin Åkerfelt, Matthias Nees","doi":"10.1002/smsc.202400084","DOIUrl":"https://doi.org/10.1002/smsc.202400084","url":null,"abstract":"Mesoporous silica nanoparticles (MSNs) have emerged as promising drug carriers that can facilitate targeted anticancer drug delivery, but efficiency studies relying on active targeting mechanisms remain elusive. This study implements in vitro 3D cocultures, so-called microtissues, to model a physiologically relevant tumor microenvironment (TME) to examine the impact of surface-modified MSNs without targeting ligands on the internalization, cargo delivery, and cargo release in tumor cells and cancer-associated fibroblasts. Among these, acetylated MSNs most effectively localized in tumor cells in a 3D setting containing collagen, while other MSNs did so to a lesser degree, most likely due to remaining trapped in the extracellular matrix of the TME. Confocal imaging of hydrophobic model drug-loaded MSNs demonstrated effective cargo release predominantly in tumor cells, both in 2D and 3D cocultures. MSN-mediated delivery of an anticancer drug in the microtissues exhibited a significant reduction in tumor organoid size and enhanced the tumor-specific cytotoxic effects of a γ-secretase inhibitor, compared to the highly hydrophobic drug in free form. This inherent targeting potential suggests reduced off-target effects and increased drug efficacy, showcasing the promise of surface modification of MSNs as a means of direct cell-specific targeting and delivery for precise and successful targeted drug delivery.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-08DOI: 10.1002/smsc.202400165
Yun Seong Byeon, Wontae Lee, Sangbin Park, Dongil Kim, Jaewoo Jung, Min-Sik Park, Won-Sub Yoon
{"title":"Comprehensive Understanding of Elemental Doping and Substitution of Ni-Rich Cathode Materials for Lithium-Ion Batteries via In Situ Operando Analyses","authors":"Yun Seong Byeon, Wontae Lee, Sangbin Park, Dongil Kim, Jaewoo Jung, Min-Sik Park, Won-Sub Yoon","doi":"10.1002/smsc.202400165","DOIUrl":"https://doi.org/10.1002/smsc.202400165","url":null,"abstract":"This review explores the challenges and advancements in the development of high-energy lithium-ion batteries (LIBs), particularly focusing on the electrochemical and structural stability of Ni-rich cathode materials. Despite their potential to increase the energy density of LIBs, these cathode materials encounter issues such as irreversible phase transitions and structural degradation during cycling, which ultimately affect their electrochemical performance. Elemental doping/substitution has emerged as promising strategies to address these challenges. However, the precise mechanisms underlying their performance enhancement remain unclear. The objective is to elucidate the complex reaction mechanisms triggered by doping and substitution in Ni-rich cathode materials by employing in situ operando analyses to uncover their effects on electrochemical behavior and structural integrity during cycling. This comprehensive investigation aims to clarify the roles of elemental dopants or substituents in the crystal structures of Ni-rich cathode materials, thereby offering valuable insights for the structural engineering of cathode materials in high-energy LIBs. By elucidating these intricate mechanisms, this review provides a practical roadmap for future research and significantly contributes to LIB technology by guiding material design and optimization strategies in the development of advanced LIBs.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut Microbiota Regulate Saturated Free Fatty Acid Metabolism in Heart Failure","authors":"Gulinigaer Tuerhongjiang, Manyun Guo, Xiangrui Qiao, Junhui Liu, Wen Xi, Yuanyuan Wei, Peining Liu, Bowen Lou, Chen Wang, Lizhe Sun, Xiao Yuan, Hui Liu, Ying Xiong, Yunlong Ma, Hongbing Li, Bo Zhou, Lijuan Li, Zuyi Yuan, Yue Wu, Jianqing She","doi":"10.1002/smsc.202300337","DOIUrl":"https://doi.org/10.1002/smsc.202300337","url":null,"abstract":"Aims: Heart failure (HF) is associated with profound changes in cardiac metabolism. At present, there is still a lack of relevant research to explore the key microbiome and their metabolites affecting the progression of HF. Herein, the interaction of gut microbiota and circulating free fatty acid (FFA) in HF patients and mice is investigated. Methods and Results: In HF patients, by applying metagenomics analysis and targeted FFA metabolomics, enriched abundance of <i>Clostridium sporogenes</i> (<i>C.sp</i>) in early and late stage of HF patients, which negatively correlated to saturated free fatty acid (SFA) levels, is identified. KEGG analysis further indicates microbiota gene enrichment in FFA degradation in early HF, and decreased gene expression in FFA synthesis in late HF. In HF mice (C57BL/6J) induced by isoproterenol (ISO), impaired intestinal permeability is observed, and decreased fecal <i>C.sp</i> and increased SFA are further validated. At last, by supplementing <i>C.sp</i> to ISO-induced HF mice, the cardiac function, fibrosis, and myocardial size are partially rescued, together with decreased circulating SFA levels. Conclusions: <i>Clostridium</i> abundance is increased in HF, compensating cardiac function deterioration via downregulation of circulating SFA levels. The results demonstrate that the gut microbiota–SFA axis plays an important role in HF protection, which may provide a strategic advantage for the probiotic therapy development in HF.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-08DOI: 10.1002/smsc.202400122
Fabiana Giglio, Carmen Scieuzo, Sofia Ouazri, Valentina Pucciarelli, Dolores Ianniciello, Sophia Letcher, Rosanna Salvia, Ambrogio Laginestra, David L. Kaplan, Patrizia Falabella
{"title":"A Glance into the Near Future: Cultivated Meat from Mammalian and Insect Cells","authors":"Fabiana Giglio, Carmen Scieuzo, Sofia Ouazri, Valentina Pucciarelli, Dolores Ianniciello, Sophia Letcher, Rosanna Salvia, Ambrogio Laginestra, David L. Kaplan, Patrizia Falabella","doi":"10.1002/smsc.202400122","DOIUrl":"https://doi.org/10.1002/smsc.202400122","url":null,"abstract":"The increasing global population and demand for meat have led to the need to find sustainable and viable alternatives to traditional production methods. One potential solution is cultivated meat (CM), which involves producing meat in vitro from animal stem cells to generate products with nutritional and sensory properties similar to conventional livestock-derived meat. This article examines current approaches to CM production and investigates how using insect cells could enhance the process. Cell sources are a critical issue in CM production, alongside advances in culture media, bioreactors for scalability, and scaffold development. Insect cells, compared to commonly used mammalian cells, may offer advantages in overcoming technological challenges that hinder cell culture development and expansion. The objective of this review is to emphasize how insects, as a cell source for CM production, could offer a more sustainable option. A crucial aspect for achieving this goal is a comprehensive understanding of the physiology of muscle and fat cells. In this work, the characteristics of insect and mammalian cells are compared, focusing particularly on muscle and fat cell development, regulatory pathways, hormonal regulation, and tissue composition. Insect cells are a promising source for CM, offering a sustainable and environmentally friendly alternative.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}