Small Science最新文献

筛选
英文 中文
Large Area Transfer of Bismuth-Based Layered Oxide Thin Films Using a Flexible Polymer Transfer Method 利用柔性聚合物转移法实现铋基层状氧化物薄膜的大面积转移
IF 12.7
Small Science Pub Date : 2024-06-30 DOI: 10.1002/smsc.202400114
James P. Barnard, Jianan Shen, Benson Kunhung Tsai, Yizhi Zhang, Max R. Chhabra, Ke Xu, Xinghang Zhang, Raktim Sarma, Aleem Siddiqui, Haiyan Wang
{"title":"Large Area Transfer of Bismuth-Based Layered Oxide Thin Films Using a Flexible Polymer Transfer Method","authors":"James P. Barnard, Jianan Shen, Benson Kunhung Tsai, Yizhi Zhang, Max R. Chhabra, Ke Xu, Xinghang Zhang, Raktim Sarma, Aleem Siddiqui, Haiyan Wang","doi":"10.1002/smsc.202400114","DOIUrl":"https://doi.org/10.1002/smsc.202400114","url":null,"abstract":"Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single-crystal oxide substrates such as strontium titanate (SrTiO<sub>3</sub>) and lanthanum aluminate (LaAlO<sub>3</sub>) to satisfy lattice matching and minimize defect formation. However, these single-crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth-based layered oxides, for the transfer. A water-soluble sacrificial layer of Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO<sub>3</sub>) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ophthalmic Tethered Gold Yarnball-Mediated Retained Drug Delivery for Eye Fundus Disease Treatment 用于眼底疾病治疗的眼科系留金纱球介导的留置给药技术
IF 12.7
Small Science Pub Date : 2024-06-27 DOI: 10.1002/smsc.202400095
Shih-Jie Chou, Yi-Ping Yang, Min-Ren Chiang, Chih-Ying Chen, Henkie Isahwan Ahmad Mulyadi Lai, Yi-Ying Lin, You-Ren Wu, I-Chieh Wang, Aliaksandr A. Yarmishyn, Guang-Yuh Chiou, Tai-Chi Lin, De-Kuang Hwang, Shih-Jen Chen, Yueh Chien, Shang-Hsiu Hu, Shih-Hwa Chiou
{"title":"Ophthalmic Tethered Gold Yarnball-Mediated Retained Drug Delivery for Eye Fundus Disease Treatment","authors":"Shih-Jie Chou, Yi-Ping Yang, Min-Ren Chiang, Chih-Ying Chen, Henkie Isahwan Ahmad Mulyadi Lai, Yi-Ying Lin, You-Ren Wu, I-Chieh Wang, Aliaksandr A. Yarmishyn, Guang-Yuh Chiou, Tai-Chi Lin, De-Kuang Hwang, Shih-Jen Chen, Yueh Chien, Shang-Hsiu Hu, Shih-Hwa Chiou","doi":"10.1002/smsc.202400095","DOIUrl":"https://doi.org/10.1002/smsc.202400095","url":null,"abstract":"Eye fundus diseases, such as retinal degenerative diseases, which lead to blindness in ≈12% of individuals aged &gt;65 years, cause permanent damage to retinal cells. The antioxidant quercetin (QC) is promising for the effective treatment of eye fundus diseases; however, its poor solubility and low retention rate often limit its clinical application. Herein, an in situ ophthalmic tethered gold yarnball (GY) that doubles as an ocular retention agent and QC reservoir to overcome low fundus drug retention is developed. After intravitreal injection, QC@GYs enhance retinal cell leakage and internal limiting membrane permeability, facilitating the partial penetration of QC@GYs into the intraretinal tissue. The combination of retina-tethered QC@GY and first-level sustained release reduces macular degeneration in vivo by effectively regulating oxidative stress. Furthermore, the sustained release of QC preserves the viability of retinal pigment epithelium cells, reduces apoptosis, and suppresses drusen formation. This preservation of retinal morphology and function maximizes the therapeutic impact while minimizing the need for frequent intraocular administration. Overall, the ophthalmic tethered GY platform is a versatile tool for retinal drug delivery for the treatment of eye fundus diseases.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation 基于金属有机框架的废水修复微型/纳米马达
IF 12.7
Small Science Pub Date : 2024-06-26 DOI: 10.1002/smsc.202400110
Karim El-Naggar, Yangyang Yang, Wenjie Tian, Huayang Zhang, Hongqi Sun, Shaobin Wang
{"title":"Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation","authors":"Karim El-Naggar, Yangyang Yang, Wenjie Tian, Huayang Zhang, Hongqi Sun, Shaobin Wang","doi":"10.1002/smsc.202400110","DOIUrl":"https://doi.org/10.1002/smsc.202400110","url":null,"abstract":"Micro-/nanomotors (MNMs) in water remediation have garnered significant attention over the past two decades. More recently, metal-organic framework-based micro-/nanomotors (MOF-MNMs) have been applied for environmental remediation; however, a comprehensive summary of research in this research area is yet to be reported. Herein, a review is presented to cover the recent advances in MOF-MNMs and their various applications in wastewater remediation. The review presents a comprehensive introduction to MNMs, including different propulsion approaches, fabrication, and functionalization strategies, in addition to the unique features of MOF-MNMs. The conception and various synthetic routes of MOF-MNMs are extensively covered and the implementation of MOF-MNMs in water-related applications, including adsorption, degradation, sensing, and disinfection of different pollutants, is in depth discussed. Meanwhile, the propulsion and mechanism of action behind each MOF-MNM are systematically studied. Finally, the review provides insights into the challenges and perspectives to build more effective MOF-MNMs to cover versatile applications for wastewater treatment.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology-Fortified Manipulation of Cell Ca2+ Signaling 利用纳米技术操控细胞 Ca2+ 信号传导
IF 12.7
Small Science Pub Date : 2024-06-26 DOI: 10.1002/smsc.202400169
Yaofeng Zhou, Zherui Zhang, Chen Zhou, Yuanhong Ma, Haoye Huang, Junqiu Liu, Dingcheng Zhu
{"title":"Nanotechnology-Fortified Manipulation of Cell Ca2+ Signaling","authors":"Yaofeng Zhou, Zherui Zhang, Chen Zhou, Yuanhong Ma, Haoye Huang, Junqiu Liu, Dingcheng Zhu","doi":"10.1002/smsc.202400169","DOIUrl":"https://doi.org/10.1002/smsc.202400169","url":null,"abstract":"The manipulation of cytosolic Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) plays a crucial role in the study of Ca<sup>2+</sup> signaling and the therapy of its affected diseases. Nanotechnology enables the development of nanotransducers for targeted, non-invasive, highly spatiotemporal, and on-demand [Ca<sup>2+</sup>]<sub>i</sub> regulation by responding to external energy fields to activate Ca<sup>2+</sup> channels, in situ deliver Ca<sup>2+</sup>, or release the payload of chemical modulators. As considerable strides have been made in Ca<sup>2+</sup> signaling-related fundamental research and applications in recent years, in this article, it is tried to present a thorough review of nanotransducer-based [Ca<sup>2+</sup>]<sub>i</sub> manipulation, from the working principle to specific applications. Focusing on the design rationale and constructions of nanotransducers, the interactions between nanotransducers and Ca<sup>2+</sup> channels are highlighted, as well as the downstream effectors of Ca<sup>2+</sup> signaling pathways, followed by their representative biomedical applications in disease treatment and neuromodulation. Moreover, despite the enormous progress made to date, nanotransducer-regulated Ca<sup>2+</sup> signaling still confronts obstacles, and several scientific issues urgently need to be resolved. Thus, to provide brief and valid instructions for the development of nanotransducers for the regulation of Ca<sup>2+</sup> signaling, proposals on how to improve the nanotransducer-based [Ca<sup>2+</sup>]<sub>i</sub> manipulation as well as future challenges and prospects are discussed.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Sensitive 3D-Nanoplasmonic-Based Epidermal Growth Factor Receptor Mutation Multiplex Assay Chip for Liquid Biopsy 用于液体活检的高灵敏度三维纳米质子表皮生长因子受体突变多重检测芯片
IF 12.7
Small Science Pub Date : 2024-06-26 DOI: 10.1002/smsc.202400101
Ji Young Lee, Byeong-Ho Jeong, Ho Sang Jung, Taejoon Kang, Yeonkyung Park, Jin Kyung Rho, Sung-Gyu Park, Min-Young Lee
{"title":"Highly Sensitive 3D-Nanoplasmonic-Based Epidermal Growth Factor Receptor Mutation Multiplex Assay Chip for Liquid Biopsy","authors":"Ji Young Lee, Byeong-Ho Jeong, Ho Sang Jung, Taejoon Kang, Yeonkyung Park, Jin Kyung Rho, Sung-Gyu Park, Min-Young Lee","doi":"10.1002/smsc.202400101","DOIUrl":"https://doi.org/10.1002/smsc.202400101","url":null,"abstract":"Economical mutation detection method with high analytical and clinical sensitivity is necessary for early cancer diagnosis and screening. In this study, a novel 3D-nanoplasmonic-based multiplex mutation assay chip is developed to detect epidermal growth factor receptor (EGFR) mutations. This assay kit comprises a 3D-nanoplasmonic substrate immobilized with capture probes and primer–probe sets for recombinase polymerase amplification, wild-type inhibition, and fluorescence detection, enabling multiplex detection of EGFR exon 19 deletions, exon 20 insertions, and exon 21 L858R point mutations. The strategy facilitates the detection of all deletions and insertions within the target region with extremely high analytical sensitivity, detecting as low as 1 × 10<sup>−9</sup>% mutation frequency, implying three copies/reactions and 100 zM. The synergistic effects of plasmon-enhanced fluorescence from the 3D-nanoplasmonic substrate and wild-type inhibitor contribute to this high analytical sensitivity. Moreover, the developed chip exhibits 100% accuracy in the clinical testing of plasma samples from normal individuals and patients with benign lung tumor and malignant lung tumor. With high sensitivity and multiplexing capabilities, this assay operates at a low reaction temperature (around 37 °C) and requires a short processing time, ≈70 min post-cell-free DNA extraction. These features make the chip a valuable tool for easy and widespread cancer screening.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and Flexible Single Cell to Spatial Transcriptome Mapping with Celloc 利用 Celloc 准确灵活地绘制从单细胞到空间转录组的图谱
IF 12.7
Small Science Pub Date : 2024-06-26 DOI: 10.1002/smsc.202400139
Wang Yin, Xiaobin Wu, Linxi Chen, You Wan, Yuan Zhou
{"title":"Accurate and Flexible Single Cell to Spatial Transcriptome Mapping with Celloc","authors":"Wang Yin, Xiaobin Wu, Linxi Chen, You Wan, Yuan Zhou","doi":"10.1002/smsc.202400139","DOIUrl":"https://doi.org/10.1002/smsc.202400139","url":null,"abstract":"Accurate mapping between single-cell RNA sequencing (scRNA-seq) and low-resolution spatial transcriptomics (ST) data compensates for both limited resolution of ST data and missing spatial information of scRNA-seq. Celloc, a method developed for this purpose, incorporates a graph attention autoencoder and comprehensive loss functions to facilitate flexible single cell-to-spot mapping. This enables either the dissection of cell composition within each spot or the assignment of spatial locations for every cell in scRNA-seq data. Celloc's performance is benchmarked on simulated ST data, demonstrating superior accuracy and robustness compared to state-of-the-art methods. Evaluations on real datasets suggest that Celloc can reconstruct cellular spatial structures with various cell types across different tissues and histological regions.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Depth Resolution of Translucent Layers in Confocal Microscopy 共聚焦显微镜中半透明层深度分辨率建模
IF 12.7
Small Science Pub Date : 2024-06-25 DOI: 10.1002/smsc.202400120
Maximilian Maier, Thomas Böhm
{"title":"Modeling the Depth Resolution of Translucent Layers in Confocal Microscopy","authors":"Maximilian Maier, Thomas Böhm","doi":"10.1002/smsc.202400120","DOIUrl":"https://doi.org/10.1002/smsc.202400120","url":null,"abstract":"Confocal microscopy is an established technique with manifold applications that offers the capability to perform nondestructive through-plane imaging. However, depth resolution typically decreases when focusing below the surface of a sample, which limits the applicability. A computational model is introduced that calculates the axial resolution, its decay, and the attenuation coefficient from confocal through-plane scans of translucent layers. The model is benchmarked with different polymers and objectives (air, water, oil) using a confocal Raman microscope. The algorithm requires a single through-plane scan that allows to identify the sample by signal intensity differences. It fits the point spread function of the objective at the top and bottom interface of the specimen to extract the resolution at both interfaces and the attenuation coefficient of the sample. It provides robust outputs on various and even multilayered samples if the signal-to-noise ratio of the input is sufficient and if the layers are planar and homogeneous. The algorithm of the model is provided open-source for MATLAB and Python. Quantifying microscope resolution in through-plane scans can improve image analysis in multiple fields, and this study is a comprehensive proof-of-concept for the presented model. It establishes an accessible tool to quantify the depth resolution of confocal microscopy.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Chemical Degradation of Ti3C2Tx MXene Dispersions: A Chronological Analysis 了解 Ti3C2Tx MXene 分散体的化学降解:按时间顺序分析
IF 12.7
Small Science Pub Date : 2024-06-25 DOI: 10.1002/smsc.202400150
Kevinilo P. Marquez, Kim Marie D. Sisican, Rochelle P. Ibabao, Roy Alvin J. Malenab, Mia Angela N. Judicpa, Luke Henderson, Jizhen Zhang, Ken Aldren S. Usman, Joselito M. Razal
{"title":"Understanding the Chemical Degradation of Ti3C2Tx MXene Dispersions: A Chronological Analysis","authors":"Kevinilo P. Marquez, Kim Marie D. Sisican, Rochelle P. Ibabao, Roy Alvin J. Malenab, Mia Angela N. Judicpa, Luke Henderson, Jizhen Zhang, Ken Aldren S. Usman, Joselito M. Razal","doi":"10.1002/smsc.202400150","DOIUrl":"https://doi.org/10.1002/smsc.202400150","url":null,"abstract":"Titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) MXene has attracted significant attention due to its exceptional properties and versatile solution processibility. However, MXene dispersions are prone to various degradation processes, leading to the formation of byproducts that negatively affect its morphological, electrical, and mechanical properties. Through the years, several methods have been developed to mitigate MXene degradation; however, divergent viewpoints on the understanding of degradation mechanisms are prevalent, hindering the development of versatile strategies in producing environmentally stable MXene dispersions. This review provides a chronological analysis of the research efforts aimed at unraveling the underlying mechanisms of MXene degradation and highlights strategies for circumventing this process. This review discusses apparent inconsistencies in experimental findings and theoretical models. These discrepancies prompt further investigation for a clearer understanding of the degradation process in MXene. This narrative allows readers to follow the evolution of dominant theories and disputes and to ultimately stimulate further investigation, aiming for a better understanding of this process. It is anticipated that identifying the fundamental factors affecting the oxidation of MXene dispersions will enable their full-scale processing into higher-order structures and practical devices with greater longevity and long-term performance.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterotypic Seeding Generates Mixed Amyloid Polymorphs 异型播种产生混合淀粉样蛋白多态性
IF 12.7
Small Science Pub Date : 2024-06-22 DOI: 10.1002/smsc.202400109
Siddhartha Banerjee, Divya Baghel, Harrison O. Edmonds, Ayanjeet Ghosh
{"title":"Heterotypic Seeding Generates Mixed Amyloid Polymorphs","authors":"Siddhartha Banerjee, Divya Baghel, Harrison O. Edmonds, Ayanjeet Ghosh","doi":"10.1002/smsc.202400109","DOIUrl":"https://doi.org/10.1002/smsc.202400109","url":null,"abstract":"Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood. Herein, nanoscale infrared spectroscopy is used to probe the spectral facets of individual aggregates formed by aggregating Aβ42 with antiparallel fibrillar seeds of Aβ(16–22) and E22Q Aβ(1–40) Dutch mutant and it is demonstrated that Aβ can form heterotypic or mixed polymorphs that deviate significantly from its expected parallel cross β structure. It is further shown that the formation of heterotypic aggregates is not limited to the coaggregation of Aβ and its isomers, and that the former can form heterotypic fibrils with alpha-synuclein and brain protein lysates. These findings highlight the complexity of Aβ aggregation in AD and underscore the need to explore how Aβ interacts with other brain components, which is crucial for developing better therapeutic strategies for AD.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-Polarimetric Synthesized Holographic Displaying Empowered by Chirality-Assisted Metasurface 通过手性辅助元表面实现全偏振合成全息显示
IF 12.7
Small Science Pub Date : 2024-06-21 DOI: 10.1002/smsc.202400138
Yueyi Yuan, Wenjie Zhou, He Zhang, Yuxiang Wang, Hua Zong, Yue Wang, Yongkang Dong, Shah Nawaz Burokur, Kuang Zhang
{"title":"Full-Polarimetric Synthesized Holographic Displaying Empowered by Chirality-Assisted Metasurface","authors":"Yueyi Yuan, Wenjie Zhou, He Zhang, Yuxiang Wang, Hua Zong, Yue Wang, Yongkang Dong, Shah Nawaz Burokur, Kuang Zhang","doi":"10.1002/smsc.202400138","DOIUrl":"https://doi.org/10.1002/smsc.202400138","url":null,"abstract":"Metasurface-based holography provides tremendous advances in multi-dimensional detection, super-resolution imaging, and cryptography applications. Current mainstream researches on holographic metasurface are primarily focused on exploring degrees of freedom to enhance information multiplexing capability. Nevertheless, from the information security point of view, it is necessary to integrate existing available freedom resources, such as multi-polarization components, to enhance the security of holographic encryption. Herein, a full-polarimetric synthetization scheme is proposed for holographic displaying to develop a novel approach for information and imaging encryption. By exploiting chirality-assisted metasurface as the implementation platform, quadruplex circular polarization components are independently phase-modulated with separate holographic sub-imaging. For an intuitive demonstration, linear polarization is set as the encoded state to acquire the synthesized intensity image with “HIT” characters. Hence, the output holographic information in transmission field can be successfully distinguished with the valid polarization. Additionally, the sensitivity and robustness property of the synthesized holographic performance is experimentally evaluated against ergodic elliptical polarization states, where the optimal performance of working efficiency and signal-to-noise ratio only appear under the preset linear polarizations. These results effectively prove the feasibility of the polarization integration hologram, opening the door to novel solutions for future full-polarimetric encryption strategies.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信