合成细胞间基于光的近肽信号传导。

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-10-30 eCollection Date: 2025-01-01 DOI:10.1002/smsc.202400401
Hossein Moghimianavval, Kyle J Loi, Sung-Won Hwang, Yashar Bashirzadeh, Allen P Liu
{"title":"合成细胞间基于光的近肽信号传导。","authors":"Hossein Moghimianavval, Kyle J Loi, Sung-Won Hwang, Yashar Bashirzadeh, Allen P Liu","doi":"10.1002/smsc.202400401","DOIUrl":null,"url":null,"abstract":"<p><p>Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with spatial responses. Herein, a light-activated contact-dependent communication scheme for synthetic cells is designed and demonstrated. A split luminescent protein is utilized to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. The modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 1","pages":"2400401"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935020/pdf/","citationCount":"0","resultStr":"{\"title\":\"Light-Based Juxtacrine Signaling Between Synthetic Cells.\",\"authors\":\"Hossein Moghimianavval, Kyle J Loi, Sung-Won Hwang, Yashar Bashirzadeh, Allen P Liu\",\"doi\":\"10.1002/smsc.202400401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with spatial responses. Herein, a light-activated contact-dependent communication scheme for synthetic cells is designed and demonstrated. A split luminescent protein is utilized to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. The modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 1\",\"pages\":\"2400401\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞信号通过直接的物理细胞-细胞接触在生物发育、血管生成和免疫反应中起着至关重要的作用。自下而上构建的合成细胞之间的细胞间通讯机制主要依赖于扩散的化学信号,因此限制了接收细胞的响应范围。合成细胞之间的工程接触依赖信号有望解锁更复杂的空间响应信号方案。本文设计并演示了一种用于合成细胞的光激活接触依赖通信方案。利用分裂发光蛋白将信号产生限制在合成细胞的接触界面上,驱动接收细胞中光开关蛋白的募集,类似于活细胞中的近肽信号传导。模块化设计不仅展示了合成细胞之间的接触依赖通信,而且为正交接触依赖信号机制的工程设计提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-Based Juxtacrine Signaling Between Synthetic Cells.

Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with spatial responses. Herein, a light-activated contact-dependent communication scheme for synthetic cells is designed and demonstrated. A split luminescent protein is utilized to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. The modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信