高分辨率3d打印螺旋相板产生的太赫兹涡旋光束的无扫描光谱成像。

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-10-16 eCollection Date: 2024-12-01 DOI:10.1002/smsc.202400352
Andreea Aura Paraipan, Diana Gonzalez-Hernandez, Innem V A K Reddy, Giacomo Balistreri, Luca Zanotto, Mostafa Shalaby, Roberto Morandotti, Carlo Liberale, Luca Razzari
{"title":"高分辨率3d打印螺旋相板产生的太赫兹涡旋光束的无扫描光谱成像。","authors":"Andreea Aura Paraipan, Diana Gonzalez-Hernandez, Innem V A K Reddy, Giacomo Balistreri, Luca Zanotto, Mostafa Shalaby, Roberto Morandotti, Carlo Liberale, Luca Razzari","doi":"10.1002/smsc.202400352","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz technology has experienced significant advances in the past years, leading to new applications in the fields of spectroscopy, imaging, and communications. This progress requires the development of dedicated optics to effectively direct, control and manipulate terahertz radiation. In this regard, 3D printing technologies have shown great potential, offering fast prototyping, high design flexibility, and good reproducibility. While traditional 3D printing techniques allow for the preparation of terahertz optical components operating at relatively low frequencies (<0.4 THz) due to their limited resolution, two-photon polymerization lithography (TPL) exhibits high detail resolution and low surface roughness and can thus potentially enable the fabrication of high-frequency terahertz devices. Here, as a proof of principle, spiral phase plates operating at 1 THz are designed and fabricated by means of TPL. Moreover, these samples are characterized via a rapid and scanless terahertz imaging technique customized to obtain a coherent hyperspectral analysis of the generated vortex beams at varying distances along propagation. Numerical simulations are also conducted for comparison with experiments, revealing a good agreement. Current limitations of the technique are found to be mainly related with terahertz loss in TPL polymers, and possible solutions are discussed.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"4 12","pages":"2400352"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scanless Spectral Imaging of Terahertz Vortex Beams Generated by High-Resolution 3D-Printed Spiral Phase Plates.\",\"authors\":\"Andreea Aura Paraipan, Diana Gonzalez-Hernandez, Innem V A K Reddy, Giacomo Balistreri, Luca Zanotto, Mostafa Shalaby, Roberto Morandotti, Carlo Liberale, Luca Razzari\",\"doi\":\"10.1002/smsc.202400352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Terahertz technology has experienced significant advances in the past years, leading to new applications in the fields of spectroscopy, imaging, and communications. This progress requires the development of dedicated optics to effectively direct, control and manipulate terahertz radiation. In this regard, 3D printing technologies have shown great potential, offering fast prototyping, high design flexibility, and good reproducibility. While traditional 3D printing techniques allow for the preparation of terahertz optical components operating at relatively low frequencies (<0.4 THz) due to their limited resolution, two-photon polymerization lithography (TPL) exhibits high detail resolution and low surface roughness and can thus potentially enable the fabrication of high-frequency terahertz devices. Here, as a proof of principle, spiral phase plates operating at 1 THz are designed and fabricated by means of TPL. Moreover, these samples are characterized via a rapid and scanless terahertz imaging technique customized to obtain a coherent hyperspectral analysis of the generated vortex beams at varying distances along propagation. Numerical simulations are also conducted for comparison with experiments, revealing a good agreement. Current limitations of the technique are found to be mainly related with terahertz loss in TPL polymers, and possible solutions are discussed.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"4 12\",\"pages\":\"2400352\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹技术在过去几年中取得了重大进展,在光谱学、成像和通信领域有了新的应用。这一进展需要开发专用光学器件来有效地指导、控制和操纵太赫兹辐射。在这方面,3D打印技术已经显示出巨大的潜力,提供快速原型,高设计灵活性和良好的可重复性。虽然传统的3D打印技术允许在相对较低的频率下制备太赫兹光学元件(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scanless Spectral Imaging of Terahertz Vortex Beams Generated by High-Resolution 3D-Printed Spiral Phase Plates.

Terahertz technology has experienced significant advances in the past years, leading to new applications in the fields of spectroscopy, imaging, and communications. This progress requires the development of dedicated optics to effectively direct, control and manipulate terahertz radiation. In this regard, 3D printing technologies have shown great potential, offering fast prototyping, high design flexibility, and good reproducibility. While traditional 3D printing techniques allow for the preparation of terahertz optical components operating at relatively low frequencies (<0.4 THz) due to their limited resolution, two-photon polymerization lithography (TPL) exhibits high detail resolution and low surface roughness and can thus potentially enable the fabrication of high-frequency terahertz devices. Here, as a proof of principle, spiral phase plates operating at 1 THz are designed and fabricated by means of TPL. Moreover, these samples are characterized via a rapid and scanless terahertz imaging technique customized to obtain a coherent hyperspectral analysis of the generated vortex beams at varying distances along propagation. Numerical simulations are also conducted for comparison with experiments, revealing a good agreement. Current limitations of the technique are found to be mainly related with terahertz loss in TPL polymers, and possible solutions are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信