热化学辅助悬垂氧参与电化学析氧反应的高活性稳定固定铱配合物。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-05-09 eCollection Date: 2025-07-01 DOI:10.1002/smsc.202500027
Sang Youn Chae, Myeong Jin Choi, Si Young Lee, Ja Yoon Choi, Dae Won Kim, Je Seung Lee, Eun Duck Park, Jong Suk Yoo, Oh-Shim Joo
{"title":"热化学辅助悬垂氧参与电化学析氧反应的高活性稳定固定铱配合物。","authors":"Sang Youn Chae, Myeong Jin Choi, Si Young Lee, Ja Yoon Choi, Dae Won Kim, Je Seung Lee, Eun Duck Park, Jong Suk Yoo, Oh-Shim Joo","doi":"10.1002/smsc.202500027","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the immobilization of dinuclear iridium-imidazole complexes onto indium tin oxides for the electrochemical oxygen evolution reaction (OER) in acidic media. The immobilized iridium complexes show exceptional catalytic activity and stability, which are attributed to the facile cleavage of the elongated <i>μ</i>-O bonds between the two iridium metal centers. This cleavage leads to the formation of dangling oxygen, which plays a crucial role in facilitating thermochemical water dissociation. O<sub>2</sub> is released through a dangling oxygen-participated mechanism, accompanied by the regeneration of the <i>μ</i>-O bonds. This unique OER mechanism, possibly specific to immobilized (strained) molecular catalysts, resembles the lattice oxygen participation mechanism reported for unstable oxides, but with the advantage of high stability in acidic media. This study not only identifies a new mechanism but can also inform the design of immobilized molecular catalysts with enhanced performance.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2500027"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly Active and Stable Immobilized Iridium Complexes via Thermochemically Assisted Dangling Oxygen Participation for Electrochemical Oxygen Evolution Reaction.\",\"authors\":\"Sang Youn Chae, Myeong Jin Choi, Si Young Lee, Ja Yoon Choi, Dae Won Kim, Je Seung Lee, Eun Duck Park, Jong Suk Yoo, Oh-Shim Joo\",\"doi\":\"10.1002/smsc.202500027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the immobilization of dinuclear iridium-imidazole complexes onto indium tin oxides for the electrochemical oxygen evolution reaction (OER) in acidic media. The immobilized iridium complexes show exceptional catalytic activity and stability, which are attributed to the facile cleavage of the elongated <i>μ</i>-O bonds between the two iridium metal centers. This cleavage leads to the formation of dangling oxygen, which plays a crucial role in facilitating thermochemical water dissociation. O<sub>2</sub> is released through a dangling oxygen-participated mechanism, accompanied by the regeneration of the <i>μ</i>-O bonds. This unique OER mechanism, possibly specific to immobilized (strained) molecular catalysts, resembles the lattice oxygen participation mechanism reported for unstable oxides, but with the advantage of high stability in acidic media. This study not only identifies a new mechanism but can also inform the design of immobilized molecular catalysts with enhanced performance.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 7\",\"pages\":\"2500027\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了在酸性介质中,将双核铱-咪唑配合物固定在铟锡氧化物上,用于电化学析氧反应(OER)。固定的铱配合物表现出优异的催化活性和稳定性,这是由于两个铱金属中心之间的μ-O键容易断裂。这种解理导致悬垂氧的形成,悬垂氧在促进热化学水解离中起着至关重要的作用。O2通过悬垂氧参与机制释放,伴随着μ-O键的再生。这种独特的OER机制,可能是固定(应变)分子催化剂所特有的,类似于不稳定氧化物的晶格氧参与机制,但在酸性介质中具有高稳定性的优势。该研究不仅确定了一种新的反应机理,而且可以为设计具有更高性能的固定化分子催化剂提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Active and Stable Immobilized Iridium Complexes via Thermochemically Assisted Dangling Oxygen Participation for Electrochemical Oxygen Evolution Reaction.

This study investigates the immobilization of dinuclear iridium-imidazole complexes onto indium tin oxides for the electrochemical oxygen evolution reaction (OER) in acidic media. The immobilized iridium complexes show exceptional catalytic activity and stability, which are attributed to the facile cleavage of the elongated μ-O bonds between the two iridium metal centers. This cleavage leads to the formation of dangling oxygen, which plays a crucial role in facilitating thermochemical water dissociation. O2 is released through a dangling oxygen-participated mechanism, accompanied by the regeneration of the μ-O bonds. This unique OER mechanism, possibly specific to immobilized (strained) molecular catalysts, resembles the lattice oxygen participation mechanism reported for unstable oxides, but with the advantage of high stability in acidic media. This study not only identifies a new mechanism but can also inform the design of immobilized molecular catalysts with enhanced performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信