可持续4D可打印的生物基形状记忆聚合物与线性可调性和多刺激驱动的先进应用。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-04-29 eCollection Date: 2025-07-01 DOI:10.1002/smsc.202500104
Maksims Jurinovs, Madara Veseta, Alisa Sabalina, Pedro E S Silva, Artis Linarts, Hossein Baniasadi, Jaana Vapaavuori, Sergejs Gaidukovs
{"title":"可持续4D可打印的生物基形状记忆聚合物与线性可调性和多刺激驱动的先进应用。","authors":"Maksims Jurinovs, Madara Veseta, Alisa Sabalina, Pedro E S Silva, Artis Linarts, Hossein Baniasadi, Jaana Vapaavuori, Sergejs Gaidukovs","doi":"10.1002/smsc.202500104","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable materials that effectively combine sophisticated functionality with eco-friendly materials are critical for next-generation technologies. Herein, a novel, fully bioderived, 4D printable shape memory polymer with linear tunability and remotely controlled actuation capabilities is presented. Using a linearly tunable matrix based on plant-derived acrylates with biosourced carbon content ranging from 75% to 87%, such as acrylated rapeseed oil, isobornyl acrylate, and isobornyl methacrylate, precise linear control over glass transition temperatures and mechanical properties is achieved. Furthermore, incorporating up to 0.2 wt% carbon nanotubes enhances electrical and thermal conductivity, enabling Joule heating and light-driven activation of 4D-printed actuators. These materials demonstrate remarkable shape fixity and recovery ratios above 90%, validated through thermomechanical analysis. Complex geometries, including auxetic and spiral structures, are successfully fabricated using vat photopolymerization 4D printing, highlighting exceptional resolution and defect-free printing. Dual-stage actuation and modular recovery capabilities are demonstrated for multifunctional applications. The materials reported here outperform conventional petroleum-based acrylates, requiring significantly lower activation voltages while maintaining rapid and efficient recovery. Developed biobased systems open pathways for sustainable applications in soft robotics, aerospace, adaptive medical devices, and smart textiles, paving the way for greener technologies.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2500104"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257905/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustainable 4D Printable Biobased Shape Memory Polymers with Linear Tunability and Multistimuli Actuation for Advanced Applications.\",\"authors\":\"Maksims Jurinovs, Madara Veseta, Alisa Sabalina, Pedro E S Silva, Artis Linarts, Hossein Baniasadi, Jaana Vapaavuori, Sergejs Gaidukovs\",\"doi\":\"10.1002/smsc.202500104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sustainable materials that effectively combine sophisticated functionality with eco-friendly materials are critical for next-generation technologies. Herein, a novel, fully bioderived, 4D printable shape memory polymer with linear tunability and remotely controlled actuation capabilities is presented. Using a linearly tunable matrix based on plant-derived acrylates with biosourced carbon content ranging from 75% to 87%, such as acrylated rapeseed oil, isobornyl acrylate, and isobornyl methacrylate, precise linear control over glass transition temperatures and mechanical properties is achieved. Furthermore, incorporating up to 0.2 wt% carbon nanotubes enhances electrical and thermal conductivity, enabling Joule heating and light-driven activation of 4D-printed actuators. These materials demonstrate remarkable shape fixity and recovery ratios above 90%, validated through thermomechanical analysis. Complex geometries, including auxetic and spiral structures, are successfully fabricated using vat photopolymerization 4D printing, highlighting exceptional resolution and defect-free printing. Dual-stage actuation and modular recovery capabilities are demonstrated for multifunctional applications. The materials reported here outperform conventional petroleum-based acrylates, requiring significantly lower activation voltages while maintaining rapid and efficient recovery. Developed biobased systems open pathways for sustainable applications in soft robotics, aerospace, adaptive medical devices, and smart textiles, paving the way for greener technologies.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 7\",\"pages\":\"2500104\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将复杂的功能与环保材料有效结合的可持续材料对下一代技术至关重要。本文提出了一种新颖的、完全生物衍生的、具有线性可调性和远程控制驱动能力的4D可打印形状记忆聚合物。使用基于植物衍生丙烯酸酯的线性可调基质(生物源碳含量为75%至87%),如丙烯酸菜籽油、丙烯酸异鸟酯和甲基丙烯酸异鸟酯,可以实现对玻璃化转变温度和机械性能的精确线性控制。此外,加入高达0.2 wt%的碳纳米管提高了导电性和导热性,实现了焦耳加热和光驱动的4d打印执行器激活。这些材料表现出显著的形状固定性和90%以上的回收率,通过热力学分析验证。复杂的几何形状,包括auxetic和螺旋结构,成功制造使用还原光聚合4D打印,突出卓越的分辨率和无缺陷的打印。双级驱动和模块化恢复能力证明了多功能应用。该材料的性能优于传统的石油基丙烯酸酯,需要显著降低的激活电压,同时保持快速高效的采收率。开发的生物基系统为软机器人、航空航天、自适应医疗设备和智能纺织品的可持续应用开辟了道路,为绿色技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable 4D Printable Biobased Shape Memory Polymers with Linear Tunability and Multistimuli Actuation for Advanced Applications.

Sustainable materials that effectively combine sophisticated functionality with eco-friendly materials are critical for next-generation technologies. Herein, a novel, fully bioderived, 4D printable shape memory polymer with linear tunability and remotely controlled actuation capabilities is presented. Using a linearly tunable matrix based on plant-derived acrylates with biosourced carbon content ranging from 75% to 87%, such as acrylated rapeseed oil, isobornyl acrylate, and isobornyl methacrylate, precise linear control over glass transition temperatures and mechanical properties is achieved. Furthermore, incorporating up to 0.2 wt% carbon nanotubes enhances electrical and thermal conductivity, enabling Joule heating and light-driven activation of 4D-printed actuators. These materials demonstrate remarkable shape fixity and recovery ratios above 90%, validated through thermomechanical analysis. Complex geometries, including auxetic and spiral structures, are successfully fabricated using vat photopolymerization 4D printing, highlighting exceptional resolution and defect-free printing. Dual-stage actuation and modular recovery capabilities are demonstrated for multifunctional applications. The materials reported here outperform conventional petroleum-based acrylates, requiring significantly lower activation voltages while maintaining rapid and efficient recovery. Developed biobased systems open pathways for sustainable applications in soft robotics, aerospace, adaptive medical devices, and smart textiles, paving the way for greener technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信