Co-Doping Approach for Enhanced Electron Extraction to TiO2 for Stable Inorganic Perovskite Solar Cells.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-05-06 eCollection Date: 2025-07-01 DOI:10.1002/smsc.202400578
Thomas W Gries, Davide Regaldo, Hans Köbler, Noor Titan Putri Hartono, Steven P Harvey, Maxim Simmonds, Chiara Frasca, Marlene Härtel, Gennaro V Sannino, Roberto Félix, Elif Hüsam, Ahmed Saleh, Regan G Wilks, Fengshuo Zu, Emilio Gutierrez-Partida, Zafar Iqbal, Zahra Loghman Nia, Fengjiu Yang, Paola Delli Veneri, Kai Zhu, Martin Stolterfoht, Marcus Bär, Stefan A Weber, Philip Schulz, Jean-Baptiste Puel, Jean-Paul Kleider, Eva Unger, Qiong Wang, Artem Musiienko, Antonio Abate
{"title":"Co-Doping Approach for Enhanced Electron Extraction to TiO<sub>2</sub> for Stable Inorganic Perovskite Solar Cells.","authors":"Thomas W Gries, Davide Regaldo, Hans Köbler, Noor Titan Putri Hartono, Steven P Harvey, Maxim Simmonds, Chiara Frasca, Marlene Härtel, Gennaro V Sannino, Roberto Félix, Elif Hüsam, Ahmed Saleh, Regan G Wilks, Fengshuo Zu, Emilio Gutierrez-Partida, Zafar Iqbal, Zahra Loghman Nia, Fengjiu Yang, Paola Delli Veneri, Kai Zhu, Martin Stolterfoht, Marcus Bär, Stefan A Weber, Philip Schulz, Jean-Baptiste Puel, Jean-Paul Kleider, Eva Unger, Qiong Wang, Artem Musiienko, Antonio Abate","doi":"10.1002/smsc.202400578","DOIUrl":null,"url":null,"abstract":"<p><p>Inorganic perovskite CsPbI<sub>3</sub> solar cells hold great potential for improving the operational stability of perovskite photovoltaics. However, electron extraction is limited by the low conductivity of TiO<sub>2</sub>, representing a bottleneck for achieving stable performance. In this study, a co-doping strategy for TiO<sub>2</sub> using Nb(V) and Sn(IV), which reduces the material's work function by 80 meV compared to Nb(V) mono-doped TiO<sub>2</sub>, is introduced. To gain fundamental understanding of the processes at the interfaces between the perovskite and charge-selective layer, transient surface photovoltage measurements are applied, revealing the beneficial effect of the energetic and structural modification on electron extraction across the CsPbI<sub>3</sub>/TiO<sub>2</sub> interface. Using 2D drift-diffusion simulations, it is found that co-doping reduces the interface hole recombination velocity by two orders of magnitude, increasing the concentration of extracted electrons by 20%. When integrated into n-i-p solar cells, co-doped TiO<sub>2</sub> enhances the projected <i>T</i> <sub>S80</sub> lifetimes under continuous AM1.5G illumination by a factor of 25 compared to mono-doped TiO<sub>2</sub>. This study provides fundamental insights into interfacial charge extraction and its correlation with operational stability of perovskite solar cells, offering potential applications for other charge-selective contacts.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2400578"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic perovskite CsPbI3 solar cells hold great potential for improving the operational stability of perovskite photovoltaics. However, electron extraction is limited by the low conductivity of TiO2, representing a bottleneck for achieving stable performance. In this study, a co-doping strategy for TiO2 using Nb(V) and Sn(IV), which reduces the material's work function by 80 meV compared to Nb(V) mono-doped TiO2, is introduced. To gain fundamental understanding of the processes at the interfaces between the perovskite and charge-selective layer, transient surface photovoltage measurements are applied, revealing the beneficial effect of the energetic and structural modification on electron extraction across the CsPbI3/TiO2 interface. Using 2D drift-diffusion simulations, it is found that co-doping reduces the interface hole recombination velocity by two orders of magnitude, increasing the concentration of extracted electrons by 20%. When integrated into n-i-p solar cells, co-doped TiO2 enhances the projected T S80 lifetimes under continuous AM1.5G illumination by a factor of 25 compared to mono-doped TiO2. This study provides fundamental insights into interfacial charge extraction and its correlation with operational stability of perovskite solar cells, offering potential applications for other charge-selective contacts.

稳定无机钙钛矿太阳能电池中TiO2电子萃取的共掺杂方法。
无机钙钛矿CsPbI3太阳能电池在提高钙钛矿光伏电池的运行稳定性方面具有很大的潜力。然而,TiO2的低电导率限制了电子提取,这是实现稳定性能的瓶颈。在本研究中,介绍了一种Nb(V)和Sn(IV)共掺杂TiO2的策略,与Nb(V)单掺杂TiO2相比,该策略使材料的功函数降低了80 meV。为了获得钙钛矿和电荷选择层之间界面过程的基本理解,应用瞬态表面光电压测量,揭示了能量和结构修饰对CsPbI3/TiO2界面上电子提取的有益影响。通过二维漂移-扩散模拟,发现共掺杂使界面空穴复合速度降低了两个数量级,提取电子的浓度提高了20%。当集成到n-i-p太阳能电池中时,与单掺杂TiO2相比,共掺杂TiO2在连续AM1.5G照明下的预测T S80寿命提高了25倍。这项研究为钙钛矿太阳能电池的界面电荷提取及其与运行稳定性的关系提供了基本的见解,为其他电荷选择接触提供了潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信