Turkish Journal of Chemistry最新文献

筛选
英文 中文
Highly sensitive and selective detection of KLK4 in human serum with a low-cost electrochemical biosensor. 低成本电化学生物传感器对人血清中KLK4的高灵敏度和选择性检测。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-29 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3737
Elif Burcu Aydin
{"title":"Highly sensitive and selective detection of KLK4 in human serum with a low-cost electrochemical biosensor.","authors":"Elif Burcu Aydin","doi":"10.55730/1300-0527.3737","DOIUrl":"10.55730/1300-0527.3737","url":null,"abstract":"<p><p>An ultrasensitive impedimetric immunosensor was fabricated using a poly(glycidyl methacrylate) (PGMA) polymer-covered indium tin oxide (ITO) platform for the quantification of kallikrein 4 (KLK4), an important prostate cancer biomarker. PGMA had suitable biocompatibility and nontoxicity for loading of antiKLK4 antibodies on the ITO substrate surface. Anti-KLK4 biomolecules were directly attached to the PGMA-covered electrode surface via epoxy groups of the PGMA polymer. The preparation method for the PGMA matrix-modified electrode was simple and inexpensive. The proposed biosensor immobilization layers coated on the ITO electrode were characterized with electrochemical techniques. The experimental parameters that affect biosensor response were optimized, and the suggested sensor showed a linear response from 0.04 pg/mL to 8 pg/mL with a low detection limit (LOD) of 12.21 fg/mL. Moreover, it had acceptable stability, reproducibility, and repeatability. Additionally, the disposable biosensor offered excellent reliability and accuracy in KLK4 analysis, suggesting that it could be used as an alternative technique in clinical diagnosis.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"382-393"},"PeriodicalIF":1.3,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispersive micro solid phase extraction of cadmium on MIL-53(Al)@BaTiO3 nanocomposite from seafood samples. MIL-53(Al)@BaTiO3纳米复合材料分散微固相萃取海产品样品中的镉
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-15 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3733
Mustafa Soylak, Eda Bora, Furkan Uzcan
{"title":"Dispersive micro solid phase extraction of cadmium on MIL-53(Al)@BaTiO<sub>3</sub> nanocomposite from seafood samples.","authors":"Mustafa Soylak, Eda Bora, Furkan Uzcan","doi":"10.55730/1300-0527.3733","DOIUrl":"10.55730/1300-0527.3733","url":null,"abstract":"<p><p>This study's main goal was to produce a user-friendly dispersive micro solid phase extraction (dmSPE) technique with a MIL-53(Al)@BaTiO<sub>3</sub> nanocomposite for the extraction and preconcentration of cadmium (Cd) in various seafood matrices, followed by using high-resolution continuum source flame atomic absorption spectrometry (HR-CS-FAAS). The MIL-53(Al)@BaTiO<sub>3</sub> nanocomposite was synthesized and characterized using a range of techniques, including Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. The dmSPE technique involved the dispersion of the MIL-53(Al)@BaTiO<sub>3</sub> material in the sample solution, followed by its separation from the sample matrix. The optimized method exhibited a linear range of 3.6-250 μg L<sup>-1</sup>, a limit of detection (LOD) of 1.2 μg L<sup>-1</sup>, and a preconcentration factor of 80. Two different certified reference materials were used to ensure the validation of developed method. The method was applied to different seafood samples.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"336-345"},"PeriodicalIF":1.3,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of DDT, DDD, and DDE from washing extracts of contaminated soil using polyaniline/bagasse composite material. 用聚苯胺/甘蔗渣复合材料去除污染土壤洗涤提取物中的DDT、DDD和DDE。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-12 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3731
Hop Quang Nguyen, Bach Xuan Nguyen, Thien Quang Tran, Anh Van Nguyen
{"title":"Removal of DDT, DDD, and DDE from washing extracts of contaminated soil using polyaniline/bagasse composite material.","authors":"Hop Quang Nguyen, Bach Xuan Nguyen, Thien Quang Tran, Anh Van Nguyen","doi":"10.55730/1300-0527.3731","DOIUrl":"10.55730/1300-0527.3731","url":null,"abstract":"<p><p>Polyaniline (PANi) was hybridized with a bagasse (BG) substrate to treat Dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane compounds, which are persistent organic pollutants (POPs) causing environmental contamination. The PANi/bagasse (PA/BG) composite was synthesized using ammonium persulfate and sulfuric acid, achieving efficiencies ranging from 82.63% to 86.92% with different ratios of PANi monomer to BG. Infrared spectroscopy (IR) and scanning electron microscopy (SEM) were used to characterize the synthesized materials. The adsorption capacities of DDT, DDD, and DDE compounds were investigated under various conditions, including adsorbent type, adsorption time, adsorbent dosage, and adsorbate concentration. Both Langmuir and Freundlich isotherm models were applied to evaluate the adsorption process, and the results indicated that both models were suitable for describing the adsorption of DDT, DDD, and DDE by the PANi/bagasse composite material.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"310-324"},"PeriodicalIF":1.3,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single batch synthesis of pure phase Mo2C from ammonium molybdate: pathway and properties. 钼酸铵单批次合成纯相Mo2C:途径及性能。
IF 1.4 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-08 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3735
Melek Cumbul Altay
{"title":"A single batch synthesis of pure phase Mo<sub>2</sub>C from ammonium molybdate: pathway and properties.","authors":"Melek Cumbul Altay","doi":"10.55730/1300-0527.3735","DOIUrl":"10.55730/1300-0527.3735","url":null,"abstract":"<p><p>This study presents an original, effective, and environmentally friendly method for synthesizing pure molybdenum carbide (Mo<sub>2</sub>C) from ammonium molybdate tetrahydrate (AMT) without generating carbon dioxide, a greenhouse gas. The process involves the sequential transformation of AMT to Mo<sub>2</sub>C, which follows the reaction pathway of (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>→MoO<sub>3</sub>→MoO<sub>2</sub>→Mo→Mo<sub>2</sub>C. This transformation is achieved by strategically altering the gas atmosphere, switching from Ar to H<sub>2</sub> at 800 K and then from H<sub>2</sub> to CH<sub>4</sub> at 1000 K. Thermal analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques were used to characterize AMT and the products. Mass measurements were used to follow the conversion of AMT to intermediate products and to the final product (Mo<sub>2</sub>C). It was found that 57.67% of AMT was converted to Mo<sub>2</sub>C, in agreement with the theoretical value (57.74%). Differential scanning calorimetry/thermogravimetry curves revealed four steps at 401 K, 495 K, 507 K, and 595 K during AMT decomposition to MoO<sub>3</sub>. XRD patterns revealed the formation of phase-pure Mo<sub>2</sub>C, with characteristic diffraction peaks 2θ = 34.176°, 2θ = 37.712°, and 2θ = 39.197° assigned to the (100), (002), and (101) crystal planes, respectively. SEM images showed that fine Mo<sub>2</sub>C particles with a thickness of 0.1 μm was obtained from very coarse AMT particles (>50 μm). In order to determine the solid and gaseous phases likely to form during the reaction, thermodynamic analysis using Gibbs' free energy minimization method was also carried out prior to synthesis. The reduction reactions and the resulting morphologies of the synthesized materials were discussed in terms of thermodynamic results and density changes associated with the conversions. This study demonstrates a novel reaction pathway that sequentially converts the molybdenum species from Ammonium Molybdate Tetrahydrate (AMT) to the final Mo<sub>2</sub>C phase without the release of CO<sub>2</sub>.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"360-370"},"PeriodicalIF":1.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144733475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of p53 biomarker with a smart electrochemical biosensor based on brush polymer-functionalized disposable electrode. 基于刷式聚合物功能化一次性电极的智能电化学生物传感器检测p53生物标志物。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3736
Muhammet Aydin
{"title":"Determination of p53 biomarker with a smart electrochemical biosensor based on brush polymer-functionalized disposable electrode.","authors":"Muhammet Aydin","doi":"10.55730/1300-0527.3736","DOIUrl":"10.55730/1300-0527.3736","url":null,"abstract":"<p><p>A label-less impedimetric biosensor modified with poly(thiophene)-graft-poly(glycidyl methacrylate) polymer (PThi-g-PGM) was manufactured for p53 protein quantification in human serum samples. In this study, PThi-g-PGM polymer was synthesized, and this polymer matrix was coated using the spin-coating technique on the single-use indium tin oxide (ITO) substrate for anti-p53 antibody immobilization. The anti-p53 antibodies with high affinity for p53 proteins were covalently attached onto the PThi-g-PGM-coated electrode surface. In addition, the affinity of anti-p53 for the p53 protein was monitored at a constant frequency. Under optimized conditions, the impedimetric changes were linearly related to the p53 concentrations, ranging from 0.05 to 15 pg/mL with a low detection limit of 15.9 fg/mL. This biosensor had desirable storage stability, acceptable repeatability, and high reproducibility. Moreover, this impedimetric biosensor could be regenerated through an acidic treatment procedure. Additionally, the suggested biosensor successfully detected the p53 antigen in human serum samples, and good recycling rates (98.41%-109.32%) were found. In summary, the proposed immunosensor may be a powerful tool for the analysis of the p53 protein for early detection of cancer biomarkers.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"371-381"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of mitoxantrone in environmental waters: a spectrophotometric method with preconcentration by salt saturated pipette-tip micro solid phase extraction using molecularly imprinted polymer. 环境水体中米托蒽醌的测定:盐饱和移液-分子印迹聚合物微固相萃取法。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3728
Sayyed Hossein Hashemi, Massoud Kaykhaii, Ahmad Jamali Keikha, Mina Esmailiun
{"title":"Determination of mitoxantrone in environmental waters: a spectrophotometric method with preconcentration by salt saturated pipette-tip micro solid phase extraction using molecularly imprinted polymer.","authors":"Sayyed Hossein Hashemi, Massoud Kaykhaii, Ahmad Jamali Keikha, Mina Esmailiun","doi":"10.55730/1300-0527.3728","DOIUrl":"10.55730/1300-0527.3728","url":null,"abstract":"<p><p>In this research, a fast and simple spectrophotometric method is presented for mitoxantrone determination in various aqueous samples. It utilizes preconcentration by salt saturated pipette-tip micro solid phase extraction with a selective molecularly imprinted polymer adsorbent packed in a micropipette tip. Prior to sample loading, they were saturated with a mixture of NaCl, Mg (NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O and KNO<sub>3</sub> salts, enhancing extraction efficiency by 27.5% compared to salt-free conditions. Key microextraction parameters (amount of molecularly imprinted polymer, sample pH, eluent type/volume, and adsorption/desorption cycles) were optimized using response surface methodology and one-variable-at-a-time methods. The method achieves a low detection limit (0.2 μg L<sup>-1</sup>) and a wide linear range (1-1000 μg L<sup>-1</sup>). An enrichment factor of 49 is obtained with excellent accuracy (relative standard deviation <4.4%). The method was validated by comparing it to a standard high performance liquid chromatography protocol, as well as spiking real samples in three concentration levels. The method successfully detected low levels of mitoxantrone in various water samples.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"267-278"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new turn off fluorescent NIR probe for hypochlorous acid and its applications. 一种新型次氯酸关闭型近红外荧光探针及其应用。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-03-29 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3725
Ayten Ibrahimova, Ayşe Nur Önem, Mehmet Altun, Emin Ahmet Yeşil, Aslı Baysal, Hasan Saygin, Ahu Soyocak, Mustafa Özyürek
{"title":"A new turn off fluorescent NIR probe for hypochlorous acid and its applications.","authors":"Ayten Ibrahimova, Ayşe Nur Önem, Mehmet Altun, Emin Ahmet Yeşil, Aslı Baysal, Hasan Saygin, Ahu Soyocak, Mustafa Özyürek","doi":"10.55730/1300-0527.3725","DOIUrl":"10.55730/1300-0527.3725","url":null,"abstract":"<p><p>Hypochlorous acid (HOCl) is a potent nonradical oxidant involved in various physiological processes, particularly within the human immune system. In this study, we introduce a novel, rapid, and highly efficient fluorometric method for the detection of HOCl. The method utilizes a near-infrared (NIR)-based fluorescent probe, NIR-QBH, which is characterized by its high sensitivity and chemical stability. NIR-QBH, containing olefinic C=C bonds, exhibits strong NIR emission at 660 nm (λ<sub>ex</sub> = 618 nm). The detection mechanism relies on the oxidation of the C=C bond in the NIR-QBH structure by HOCl, resulting in the formation of non-fluorescent products. With a detection limit of 0.23 μM, the probe demonstrates a fast response time of 4 min. Glutathione (GSH), an essential biothiol, was employed as a reference HOCl scavenger, and its HOCl scavenging activity was evaluated with an IC<sub>50</sub> value of 8.97 μM. Furthermore, the developed fluorometric assay was successfully applied for the detection of HOCl in fetal bovine serum (FBS) and aqueous solutions.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 2","pages":"241-253"},"PeriodicalIF":1.3,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144012037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pt-enhanced WO3 nanoparticles for efficient hydrogen production: synthesis and electrochemical evaluation. 用于高效制氢的pt增强WO3纳米颗粒:合成和电化学评价。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-03-18 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3734
Merve Akbayrak
{"title":"Pt-enhanced WO<sub>3</sub> nanoparticles for efficient hydrogen production: synthesis and electrochemical evaluation.","authors":"Merve Akbayrak","doi":"10.55730/1300-0527.3734","DOIUrl":"10.55730/1300-0527.3734","url":null,"abstract":"<p><p>In this study, Pt/WO<sub>3</sub> nanoparticles were synthesized using a simple room-temperature impregnation-reduction method and characterized by advanced techniques including ICP, TEM-EDX, FE-SEM-EDX, and XRD. The ICP-OES analysis confirmed a 1.0 wt. % Pt loading on the WO<sub>3</sub> support. TEM and FE-SEM analyses revealed that the Pt nanoparticles were well dispersed with an average size of approximately 3.7 nm. The XRD patterns showed characteristic WO<sub>3</sub> peaks without any detectable Pt diffraction peaks, indicating the high dispersion of Pt. Electrochemical evaluations demonstrated that the Pt/WO<sub>3</sub> catalyst exhibited outstanding hydrogen evolution reaction (HER) performance, with -27.8 mV vs. RHE onset potential and -37.4 mV overpotential at 10 mA.cm<sup>-2</sup>, outperforming bare WO<sub>3</sub>. The Tafel slope (b) of 68.6 mV·dec<sup>-1</sup> indicates efficient reaction kinetics following the Volmer-Heyrovsky pathway. The impedance analysis confirmed efficient charge transfer, with a b value of 69.7 mV.dec<sup>-1</sup>. The ECSA was calculated as 8.575 cm<sup>2</sup>, highlighting the high surface activity of the catalyst. Stability tests showed minor degradation but retained significant catalytic activity. This work emphasizes the potential of Pt/WO<sub>3</sub> as an environmentally friendly, cost-efficient catalyst with promising applications in HER, providing a scalable and effective approach to hydrogen production.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"346-359"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of heavy metal iron(II) ions from wastewater using an ultrasonic system with climbazole-alcohol. 用克莱巴唑-醇超声系统去除废水中的重金属铁离子。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3729
Melek Gökmen Karakaya, Bahdişen Gezer, Abdullah Menzek, Özlem Gündoğdu Aytaç
{"title":"Removal of heavy metal iron(II) ions from wastewater using an ultrasonic system with climbazole-alcohol.","authors":"Melek Gökmen Karakaya, Bahdişen Gezer, Abdullah Menzek, Özlem Gündoğdu Aytaç","doi":"10.55730/1300-0527.3729","DOIUrl":"10.55730/1300-0527.3729","url":null,"abstract":"<p><p>Climbazole (CBZ) is an antifungal active pharmaceutical ingredient often used in antidandruff products. In this study, the ketone group in the racemic CBZ molecule was reduced to synthesize CBZ-alcohol, named 1-(4-chlorophenoxy)-1-(1<i>H</i>-imidazol-1-yl)-3,3-dimethylbutan-2-ol, and the optimum adsorption conditions were investigated for removing iron(II) (Fe<sup>2+</sup>) ions from wastewater by adsorption from aqueous solutions using the economical and environmentally friendly ultrasonic method. The parameters and levels used in the study were designed using response surface methodology and model equations were derived to optimize the results. The independent variables selected were the initial pH (1, 3, and 5), adsorption time (30, 45, and 60 min), adsorption temperature (40, 60, and 80 °C), and Fe<sup>2+</sup> ions consumption percentage from the wastewater. Experiments were conducted on a real wastewater sample taken from the Uşak Organized Industrial Zone. Conditions that maximize each dependent variable were specified separately and verification experiments were conducted under these conditions. Maximum Fe<sup>2+</sup> ion consumption was 91.83%. The R<sup>2</sup> value of the model was 0.9598. The findings demonstrate that CBZ-alcohol was effective as an adsorbent in Fe<sup>2+</sup> ion removal from aqueous solution.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"279-292"},"PeriodicalIF":1.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecofriendly synthesis and characterization of oxygen-enriched g-C3N4 from diverse precursors for efficient organic dye decontamination. 不同前驱体富氧g-C3N4的生态友好合成和表征,用于有效去除有机染料。
IF 1.3 4区 化学
Turkish Journal of Chemistry Pub Date : 2025-03-01 eCollection Date: 2025-01-01 DOI: 10.55730/1300-0527.3724
Muchammad Tamyiz
{"title":"Ecofriendly synthesis and characterization of oxygen-enriched g-C<sub>3</sub>N<sub>4</sub> from diverse precursors for efficient organic dye decontamination.","authors":"Muchammad Tamyiz","doi":"10.55730/1300-0527.3724","DOIUrl":"10.55730/1300-0527.3724","url":null,"abstract":"<p><p>Industrial wastewater from sectors such as textiles, printing, and pharmaceuticals contain harmful pollutants, including nonbiodegradable dyes, which pose significant challenges for environmental safety. Neutral red, a cationic dye commonly found in wastewater, obstructs photosynthesis in aquatic ecosystems and carries potential toxicity. Traditional methods of dye removal often prove ineffective due to the chemical stability of these compounds. In this study, oxygen-doped graphitic carbon nitride (O-doped g-C<sub>3</sub>N<sub>4</sub>) was synthesized as an innovative photocatalyst for the degradation of neutral red dye under visible light. The material was synthesized through a sustainable process involving the calcination of urea, dicyandiamide, and oxalic acid, and its characteristics were evaluated using various techniques, including XRD, FT-IR, UV-Vis spectroscopy, and SEM. Photocatalytic degradation of neutral red was analysed using a custom photoreactor under visible light. The results demonstrated that O-doped g-C<sub>3</sub>N<sub>4</sub> exhibited enhanced photocatalytic efficiency compared to pure g-C<sub>3</sub>N<sub>4</sub>, reducing the recombination of electron-hole pairs and effectively degrading the dye. Adsorption kinetics followed a pseudo-2nd-order model, while adsorption isotherms suggested that the Langmuir model best described the adsorption process, indicating monolayer adsorption. The maximum adsorption capacity of O-doped g-C<sub>3</sub>N<sub>4</sub> for neutral red was 9.643 mg g<sup>-1</sup>, surpassing pure g-C<sub>3</sub>N<sub>4</sub>. The photocatalytic performance of OCN-UD was assessed under visible light, revealing a significant degradation efficiency of 86% for neutral red after 60 min, compared to 51% for pure g-C<sub>3</sub>N<sub>4</sub>. Kinetic studies indicated that the adsorption of neutral red onto OCN-UD primarily followed a pseudo-2nd-order model, demonstrating chemical adsorption processes. The synergistic effects of adsorption and photocatalysis were evident, as the initial adsorption phase concentrated dye molecules near active sites, facilitating efficient photocatalytic degradation through reactive oxygen species generation. This study highlights the potential of O-doped g-C<sub>3</sub>N<sub>4</sub> as an efficient, eco-friendly solution for the treatment of dye-laden wastewater.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 2","pages":"228-240"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信