Synthetic and Systems Biotechnology最新文献

筛选
英文 中文
Achieving robust synthetic tolerance in industrial E. coli through negative auto-regulation of a DsrA-Hfq module 通过 DsrA-Hfq 模块的负自动调节实现工业大肠杆菌的稳健合成耐受性
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-11 DOI: 10.1016/j.synbio.2024.04.003
Xiaofeng Yang , Jingduan Yang , Haozheng Huang , Xiaofang Yan , Xiaofan Li , Zhanglin Lin
{"title":"Achieving robust synthetic tolerance in industrial E. coli through negative auto-regulation of a DsrA-Hfq module","authors":"Xiaofeng Yang ,&nbsp;Jingduan Yang ,&nbsp;Haozheng Huang ,&nbsp;Xiaofang Yan ,&nbsp;Xiaofan Li ,&nbsp;Zhanglin Lin","doi":"10.1016/j.synbio.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.003","url":null,"abstract":"<div><p>In industrial fermentation processes, microorganisms often encounter acid stress, which significantly impact their productivity. This study focused on the acid-resistant module composed of small RNA (sRNA) DsrA and the sRNA chaperone Hfq. Our previous study had shown that this module improved the cell growth of <em>Escherichia coli</em> MG1655 at low pH, but failed to obtain this desired phenotype in industrial strains. Here, we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode. We then assessed the potential of the CymR-based negative auto-regulation (NAR) circuit for industrial application, under different media, strains and pH levels. Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of <em>E. coli</em> MG1655. This circuit was robust and worked well in the industrial lysine-producing strain <em>E. coli</em> SCEcL3 at a starting pH of 6.8 and without pH control, resulting in a 250 % increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain. This study showed the practical application of NAR circuit in regulating DsrA-Hfq module, effectively and robustly improving the acid tolerance of industrial strains, which provides a new approach for breeding industrial strains with tolerance phenotype.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 462-469"},"PeriodicalIF":4.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000541/pdfft?md5=f0ed41f388c8b079b0c7f121a5db213d&pid=1-s2.0-S2405805X24000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses 通过寿命工程设计-构建-测试重组枯草芽孢杆菌底盘细胞,实现稳健的生物过程
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-11 DOI: 10.1016/j.synbio.2024.04.004
Kexin Ren , Qiang Wang , Jianghua Chen , Hengwei Zhang , Zhoule Guo , Meijuan Xu , Zhiming Rao , Xian Zhang
{"title":"Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses","authors":"Kexin Ren ,&nbsp;Qiang Wang ,&nbsp;Jianghua Chen ,&nbsp;Hengwei Zhang ,&nbsp;Zhoule Guo ,&nbsp;Meijuan Xu ,&nbsp;Zhiming Rao ,&nbsp;Xian Zhang","doi":"10.1016/j.synbio.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.004","url":null,"abstract":"<div><p>Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. <em>Bacillus subtilis</em> is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust <em>B. subtilis</em> chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of <span>l</span>-glutaminase, and tolerate hydroquinone to produce <em>α</em>-arbutin efficiently. In a 5 L bioreactor, the <span>l</span>-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL<sup>−1</sup>, about 1.98-fold compared with that of the wild type. The <em>α</em>-arbutin yield of strain CRE15A was increased to 134.7 g L<sup>−1</sup>, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 470-480"},"PeriodicalIF":4.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000553/pdfft?md5=5bfdc1af1271a1ff0fba8f57f56cbf3f&pid=1-s2.0-S2405805X24000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotransformation of ethylene glycol by engineered Escherichia coli 工程大肠杆菌对乙二醇的生物转化
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-11 DOI: 10.1016/j.synbio.2024.04.006
Wenlong Yan , Xinhua Qi , Zhibei Cao , Mingdong Yao , Mingzhu Ding , Yingjin Yuan
{"title":"Biotransformation of ethylene glycol by engineered Escherichia coli","authors":"Wenlong Yan ,&nbsp;Xinhua Qi ,&nbsp;Zhibei Cao ,&nbsp;Mingdong Yao ,&nbsp;Mingzhu Ding ,&nbsp;Yingjin Yuan","doi":"10.1016/j.synbio.2024.04.006","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.006","url":null,"abstract":"<div><p>There has been extensive research on the biological recycling of PET waste to address the issue of plastic waste pollution, with ethylene glycol (EG) being one of the main components recovered from this process. Therefore, finding ways to convert PET monomer EG into high-value products is crucial for effective PET waste recycling. In this study, we successfully engineered <em>Escherichia coli</em> to utilize EG and produce glycolic acid (GA), expecting to facilitate the biological recycling of PET waste. The engineered <em>E. coli</em>, able to utilize 10 g/L EG to produce 1.38 g/L GA within 96 h, was initially constructed. Subsequently, strategies based on overexpression of key enzymes and knock-out of the competing pathways are employed to enhance EG utilization along with GA biosynthesis. An engineered <em>E. coli</em>, characterized by the highest GA production titer and substrate conversion rate, was obtained. The GA titer increased to 5.1 g/L with a yield of 0.75 g/g EG, which is the highest level in the shake flake experiments. Transcriptional level analysis and metabolomic analysis were then conducted, revealing that overexpression of key enzymes and knock-out of the competing pathways improved the metabolic flow in the EG utilization. The improved metabolic flow also leads to accelerated synthesis and metabolism of amino acids.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 531-539"},"PeriodicalIF":4.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000577/pdfft?md5=418bd2994bbe9c77d546ec0840142fe6&pid=1-s2.0-S2405805X24000577-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the chromosomal position effects for plug-and-play application in the Myxococcus xanthus chassis cells 确定染色体位置效应,以便在黄肉球菌底盘细胞中即插即用
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-10 DOI: 10.1016/j.synbio.2024.04.007
Xin-jing Yue, Jia-rui Wang, Jun-ning Zhao, Zhuo Pan, Yue-zhong Li
{"title":"Determination of the chromosomal position effects for plug-and-play application in the Myxococcus xanthus chassis cells","authors":"Xin-jing Yue,&nbsp;Jia-rui Wang,&nbsp;Jun-ning Zhao,&nbsp;Zhuo Pan,&nbsp;Yue-zhong Li","doi":"10.1016/j.synbio.2024.04.007","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.007","url":null,"abstract":"<div><p>The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium <em>Myxococcus xanthus</em> harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the <em>M. xanthus</em> genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 540-548"},"PeriodicalIF":4.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000589/pdfft?md5=0aae53e2a9cd812450b8979ea231696c&pid=1-s2.0-S2405805X24000589-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140621416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models ECMpy 2.0:用于自动构建和分析酶约束模型的 Python 软件包
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-10 DOI: 10.1016/j.synbio.2024.04.005
Zhitao Mao , Jinhui Niu , Jianxiao Zhao , Yuanyuan Huang , Ke Wu , Liyuan Yun , Jirun Guan , Qianqian Yuan , Xiaoping Liao , Zhiwen Wang , Hongwu Ma
{"title":"ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models","authors":"Zhitao Mao ,&nbsp;Jinhui Niu ,&nbsp;Jianxiao Zhao ,&nbsp;Yuanyuan Huang ,&nbsp;Ke Wu ,&nbsp;Liyuan Yun ,&nbsp;Jirun Guan ,&nbsp;Qianqian Yuan ,&nbsp;Xiaoping Liao ,&nbsp;Zhiwen Wang ,&nbsp;Hongwu Ma","doi":"10.1016/j.synbio.2024.04.005","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.005","url":null,"abstract":"<div><p>Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macromolecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic parameter information and subunit composition details, making it rather user-unfriendly. In this work, we've enhanced the ECMpy toolbox to version 2.0, broadening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at <span>https://github.com/tibbdc/ECMpy</span><svg><path></path></svg> or as a pip package (<span>https://pypi.org/project/ECMpy/</span><svg><path></path></svg>).</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 494-502"},"PeriodicalIF":4.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000565/pdfft?md5=839e65c709bae41e81ef9c3792abde80&pid=1-s2.0-S2405805X24000565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polygalacturonase-inhibiting proteins as an exogenously applied natural solution for prevention of postharvest fungal infections 聚半乳糖醛酸酶抑制蛋白作为外源应用的天然解决方案,可预防收获后真菌感染
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-10 DOI: 10.1016/j.synbio.2024.04.002
Tiffany Chiu , Yanran Li
{"title":"Polygalacturonase-inhibiting proteins as an exogenously applied natural solution for prevention of postharvest fungal infections","authors":"Tiffany Chiu ,&nbsp;Yanran Li","doi":"10.1016/j.synbio.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.002","url":null,"abstract":"<div><p>Polygalacturonase inhibiting proteins (PGIPs) are plant proteins involved in the inhibition of polygalacturonases (PGs), cell-wall degrading enzymes often secreted by phytopathogenic fungi. Previously, we confirmed that PGIP2 from <em>Phaseolus vulgaris</em> (PvPGIP2) can inhibit the growth of <em>Aspergillus niger</em> and <em>Botrytis cinerea</em> on agar plate. In this study, we further validated the feasibility of using PGIP as an environmental and ecological friendly agent to prevent fungal infection post-harvest. We found that application of either purified PGIP (full length PvPGIP2 or truncated tPvPGIP2_5–8), or PGIP-secreting <em>Saccharomyces cerevisiae</em> strains can effectively inhibit fungal growth and necrotic lesions on tobacco leaf. We also examined the effective amount and thermostability of PGIP when applied on plants. A concentration of 0.75 mg/mL or higher can significantly reduce the area of <em>B. cinerea</em> lesions. The activity of full-length PvPGIPs is not affected after incubation at various temperatures ranging from −20 to 42 °C for 24 h, while truncated tPvPGIP2_5–8 lost some efficacy after incubation at 42 °C. Furthermore, we have also examined the efficacy of PGIP on tomato fruit. When the purified PvPGIP2 proteins were applied to tomato fruit inoculated with <em>B. cinerea</em> at a concentration of roughly 1.0 mg/mL<em>,</em> disease incidence and area of disease had reduced by more than half compared to the controls without PGIP treatment. This study explores the potential of PGIPs as exogenously applied, eco-friendly fungal control agents on fruit and vegetables post-harvest.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 481-493"},"PeriodicalIF":4.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X2400053X/pdfft?md5=6f4f90ec799d6a8b5efa8ca8c66f6d02&pid=1-s2.0-S2405805X2400053X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics design of a non-natural transcription factor responding to androst-4-ene-3,17-dione 响应雄-4-烯-3,17-二酮的非天然转录因子的动力学设计
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-06 DOI: 10.1016/j.synbio.2024.04.001
Ming Zhao , Mengkai Hu , Rumeng Han, Chao Ye, Xiangfei Li, Tianwen Wang, Yan Liu, Zhenglian Xue, Kun Liu
{"title":"Dynamics design of a non-natural transcription factor responding to androst-4-ene-3,17-dione","authors":"Ming Zhao ,&nbsp;Mengkai Hu ,&nbsp;Rumeng Han,&nbsp;Chao Ye,&nbsp;Xiangfei Li,&nbsp;Tianwen Wang,&nbsp;Yan Liu,&nbsp;Zhenglian Xue,&nbsp;Kun Liu","doi":"10.1016/j.synbio.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.04.001","url":null,"abstract":"<div><p>The production of androst-4-ene-3,17-dione (AD) by the steroidal microbial cell factory requires transcription factors (TFs) to participate in metabolic regulation. However, microbial cell factory lacks effective TFs that can respond to AD in its metabolic pathway. Additionally, finding and obtaining natural TFs that specifically respond to AD is a complex and onerous task. In this study, we devised an artificial TF that responds to AD, termed AdT, based on structure-guided molecular dynamics (MD) simulation. According to MD analysis of the conformational changes of AdT after binding to AD, an LBD in which the <em>N</em>- and <em>C</em>-termini exhibited convergence tendencies was used as a microswitch to guide the assembly of a DNA-binding domain lexA, a linker (GGGGS)<sub>2</sub>, and a transcription activation domain B42 into an artificial TF. As a proof of design, a AD biosensor was designed and constructed in yeast on the basis of the ligand-binding domain (LBD) of hormone receptor. In addition, the transcription factor activity of AdT was increased by 1.44-fold for its variant F320Y. Overall, we created non-natural TF elements for AD microbial cell factory, and expected that the design TF strategy will be applied to running in parallel to the signaling machinery of the host cell.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 436-444"},"PeriodicalIF":4.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000528/pdfft?md5=51e3e96a43524c8d750fe6da5386a023&pid=1-s2.0-S2405805X24000528-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production 分析和改造莫来霉素 A 的生物合成途径以提高其产量
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-04 DOI: 10.1016/j.synbio.2024.03.014
Shixue Jin , Huixue Chen , Jun Zhang , Zhi Lin , Xudong Qu , Xinying Jia , Chun Lei
{"title":"Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production","authors":"Shixue Jin ,&nbsp;Huixue Chen ,&nbsp;Jun Zhang ,&nbsp;Zhi Lin ,&nbsp;Xudong Qu ,&nbsp;Xinying Jia ,&nbsp;Chun Lei","doi":"10.1016/j.synbio.2024.03.014","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.03.014","url":null,"abstract":"<div><p>Mollemycin A (MOMA) is a unique glyco-hexadepsipeptide-polyketide that was isolated from a <em>Streptomyces</em> sp. derived from the Australian marine environment. MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites. Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues. However, modifying MOMA using chemical approaches is challenging, and the production titer of MOMA in the wild-type strain is low. This study identified and characterized the biosynthetic gene cluster of MOMA for the first time, proposed its complex biosynthetic pathway, and achieved an effective two-pronged enhancement of MOMA production. The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L<sup>−1</sup> to 1.3 mg L<sup>−1</sup>, a 44% boost. Additionally, a synergistic mutant strain was developed by deleting the <em>momB3</em> gene and overexpressing <em>momB2</em>, resulting in a 2.6-fold increase from 1.3 mg L<sup>−1</sup> to 3.4 mg L<sup>−1</sup>. These findings pave the way for investigating the biosynthetic mechanism of MOMA, creating opportunities to produce a wide range of MOMA analogues, and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 445-452"},"PeriodicalIF":4.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000486/pdfft?md5=a2a64bbb9c008e8fab8b53b72d2f937c&pid=1-s2.0-S2405805X24000486-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate modular metabolic engineering and medium optimization for vitamin B12 production by Escherichia coli 大肠杆菌生产维生素 B12 的多元模块化代谢工程和培养基优化
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-04-04 DOI: 10.1016/j.synbio.2024.03.017
Feitao Chen , Huan Fang , Jianghua Zhao , Pingtao Jiang , Huina Dong , Ying Zhao , Huiying Wang , Tongcun Zhang , Dawei Zhang
{"title":"Multivariate modular metabolic engineering and medium optimization for vitamin B12 production by Escherichia coli","authors":"Feitao Chen ,&nbsp;Huan Fang ,&nbsp;Jianghua Zhao ,&nbsp;Pingtao Jiang ,&nbsp;Huina Dong ,&nbsp;Ying Zhao ,&nbsp;Huiying Wang ,&nbsp;Tongcun Zhang ,&nbsp;Dawei Zhang","doi":"10.1016/j.synbio.2024.03.017","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.03.017","url":null,"abstract":"<div><p>Vitamin B<sub>12</sub> is a complex compound synthesized by microorganisms. The industrial production of vitamin B<sub>12</sub> relies on specific microbial fermentation processes. <em>E. coli</em> has been utilized as a host for the <em>de novo</em> biosynthesis of vitamin B<sub>12</sub>, incorporating approximately 30 heterologous genes. However, a metabolic imbalance in the intricate pathway significantly limits vitamin B<sub>12</sub> production. In this study, we employed multivariate modular metabolic engineering to enhance vitamin B<sub>12</sub> production in <em>E. coli</em> by manipulating two modules comprising a total of 10 genes within the vitamin B<sub>12</sub> biosynthetic pathway. These two modules were integrated into the chromosome of a chassis cell, regulated by T7, J23119, and J23106 promoters to achieve combinatorial pathway optimization. The highest vitamin B<sub>12</sub> titer was attained by engineering the two modules controlled by J23119 and T7 promoters. The inclusion of yeast powder to the fermentation medium increased the vitamin B<sub>12</sub> titer to 1.52 mg/L. This enhancement was attributed to the effect of yeast powder on elevating the oxygen transfer rate and augmenting the strain's isopropyl-β-<span>d</span>-1-thiogalactopyranoside (IPTG) tolerance. Ultimately, vitamin B<sub>12</sub> titer of 2.89 mg/L was achieved through scaled-up fermentation in a 5-liter fermenter. The strategies reported herein will expedite the development of industry-scale vitamin B<sub>12</sub> production utilizing <em>E. coli</em>.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 453-461"},"PeriodicalIF":4.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000516/pdfft?md5=854b2a1e70071acd954c3cdedd028ee9&pid=1-s2.0-S2405805X24000516-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and engineering of logic genetic-enzymatic gates based on the activity of the human CYP2C9 enzyme in permeabilized Saccharomyces cerevisiae cells 基于渗透酿酒酵母细胞中人类 CYP2C9 酶活性的逻辑遗传酶门的设计和工程学研究
IF 4.8 2区 生物学
Synthetic and Systems Biotechnology Pub Date : 2024-03-29 DOI: 10.1016/j.synbio.2024.03.013
Rana Azeem Ashraf, Matthias Bureik, Mario Andrea Marchisio
{"title":"Design and engineering of logic genetic-enzymatic gates based on the activity of the human CYP2C9 enzyme in permeabilized Saccharomyces cerevisiae cells","authors":"Rana Azeem Ashraf,&nbsp;Matthias Bureik,&nbsp;Mario Andrea Marchisio","doi":"10.1016/j.synbio.2024.03.013","DOIUrl":"https://doi.org/10.1016/j.synbio.2024.03.013","url":null,"abstract":"<div><p>Gene circuits allow cells to carry out complex functions such as the precise regulation of biological metabolic processes. In this study, we combined, in the yeast <em>S. cerevisiae</em>, genetic regulatory elements with the enzymatic reactions of the human CYP2C9 and its redox partner CPR on luciferin substrates and diclofenac. <em>S. cerevisiae</em> cells were permeabilized and used as enzyme bags in order to host these metabolic reactions. We engineered three different (genetic)-enzymatic basic Boolean gates (YES, NOT, and N-IMPLY). In the YES and N-IMPLY gates, human CYP2C9 was expressed under the galactose-inducible <em>GAL1</em> promoter. The carbon monoxide releasing molecule CORM-401 was used as an input in the NOT and N-IMPLY gates to impair CYP2C9 activity through inhibition of the Fe<sup>+2</sup>- heme prosthetic group in the active site of the human enzyme. Our study provides a new approach in designing synthetic bio-circuits and optimizing experimental conditions to favor the heterologous expression of human drug metabolic enzymes over their endogenous counterparts. This new approach will help study precise metabolic attributes of human P450s.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 406-415"},"PeriodicalIF":4.8,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000474/pdfft?md5=1b0e86900ca2e71dc42b1d5d44a1c2c4&pid=1-s2.0-S2405805X24000474-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信