{"title":"Predicting effective drug combinations for cancer treatment using a graph-based approach","authors":"","doi":"10.1016/j.synbio.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Drug combination therapy, involving the use of two or more drugs, has been widely employed to treat complex diseases such as cancer. It enhances therapeutic efficacy, reduces drug resistance, and minimizes side effects. However, traditional methods to identify effective drug combinations are time-consuming, costly, and less efficient than computational methods. Therefore, developing computational approaches to predict drug combinations has become increasingly important.</div><div>In this paper, we developed the Random Walk with Restart for Drug Combination (RWRDC) model to predict effective drug combinations for cancer therapy. The RWRDC model offers a quantitative mathematical method for predicting the potential effective drug combinations. Cross-validation results indicate that the RWRDC model outperforms other predictive models, particularly in breast, colorectal, and lung cancer predictions across various performance metrics. We have theoretically proven the convergence of its algorithm and provided an explanation for the algorithm's rationality. A targeted case study on breast cancer further highlights the capability of RWRDC to identify effective drug combinations. These findings highlight our model as a novel and effective tool for discovering potential effective drug combinations, offering new possibilities in therapy. Additionally, the graph-based framework of RWRDC holds potential for predicting drug combinations in other complex diseases, expanding its utility in the medical field.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001224","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug combination therapy, involving the use of two or more drugs, has been widely employed to treat complex diseases such as cancer. It enhances therapeutic efficacy, reduces drug resistance, and minimizes side effects. However, traditional methods to identify effective drug combinations are time-consuming, costly, and less efficient than computational methods. Therefore, developing computational approaches to predict drug combinations has become increasingly important.
In this paper, we developed the Random Walk with Restart for Drug Combination (RWRDC) model to predict effective drug combinations for cancer therapy. The RWRDC model offers a quantitative mathematical method for predicting the potential effective drug combinations. Cross-validation results indicate that the RWRDC model outperforms other predictive models, particularly in breast, colorectal, and lung cancer predictions across various performance metrics. We have theoretically proven the convergence of its algorithm and provided an explanation for the algorithm's rationality. A targeted case study on breast cancer further highlights the capability of RWRDC to identify effective drug combinations. These findings highlight our model as a novel and effective tool for discovering potential effective drug combinations, offering new possibilities in therapy. Additionally, the graph-based framework of RWRDC holds potential for predicting drug combinations in other complex diseases, expanding its utility in the medical field.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.