Zhengping Li , Yuhong Gan , Changyu Gou , Qiongyu Ye , Yang Wu , Yuhong Wu , Tingxing Yang , Baolian Fan , Aijia Ji , Qi Shen , Lixin Duan
{"title":"Efficient biosynthesis of β-caryophyllene in Saccharomyces cerevisiae by β-caryophyllene synthase from Artemisia argyi","authors":"Zhengping Li , Yuhong Gan , Changyu Gou , Qiongyu Ye , Yang Wu , Yuhong Wu , Tingxing Yang , Baolian Fan , Aijia Ji , Qi Shen , Lixin Duan","doi":"10.1016/j.synbio.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div><em>Artemisia argyi</em> H. Lév. & Vaniot is an important traditional Chinese medicinal plant known for its volatile oils, which are the main active components of <em>A. argyi</em>, including monoterpenes, sesquiterpenes and their derivatives. Despite its medicinal significance, the biosynthesis of sesquiterpenoids in <em>A. argyi</em> remains underexplored. In this study, we identified four <em>β</em>-caryophyllene synthases from <em>A. argyi.</em> A high-yield <em>β</em>-caryophyllene engineered <em>Saccharomyces cerevisiae</em> cell factory has been built in this study. By fusing <em>ERG20</em> and <em>AarTPS88</em> with a flexible linker (GGGS)<sub>2</sub> and enhancing metabolic flux in the MVA pathway (<em>HIF-1</em>, <em>tHMGR</em>, and <em>UPC2-1</em>), we achieved a titer of <em>β</em>-caryophyllene reached 15.6 g/L by fed-batch fermentation in a 5 L bioreactor. To our knowledge, this represents the highest reported titer of <em>β</em>-caryophyllene in yeast to date. This study provides a valuable tool for the industrial-scale production of <em>β</em>-caryophyllene.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 1","pages":"Pages 158-164"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001248","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artemisia argyi H. Lév. & Vaniot is an important traditional Chinese medicinal plant known for its volatile oils, which are the main active components of A. argyi, including monoterpenes, sesquiterpenes and their derivatives. Despite its medicinal significance, the biosynthesis of sesquiterpenoids in A. argyi remains underexplored. In this study, we identified four β-caryophyllene synthases from A. argyi. A high-yield β-caryophyllene engineered Saccharomyces cerevisiae cell factory has been built in this study. By fusing ERG20 and AarTPS88 with a flexible linker (GGGS)2 and enhancing metabolic flux in the MVA pathway (HIF-1, tHMGR, and UPC2-1), we achieved a titer of β-caryophyllene reached 15.6 g/L by fed-batch fermentation in a 5 L bioreactor. To our knowledge, this represents the highest reported titer of β-caryophyllene in yeast to date. This study provides a valuable tool for the industrial-scale production of β-caryophyllene.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.