组织芯片作为头道模型和煽动技术

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Prerna Suchitan Modi , Abhishek Singh , Awyang Chaturvedi , Shailly Agarwal , Raghav Dutta , Ranu Nayak , Alok Kumar Singh
{"title":"组织芯片作为头道模型和煽动技术","authors":"Prerna Suchitan Modi ,&nbsp;Abhishek Singh ,&nbsp;Awyang Chaturvedi ,&nbsp;Shailly Agarwal ,&nbsp;Raghav Dutta ,&nbsp;Ranu Nayak ,&nbsp;Alok Kumar Singh","doi":"10.1016/j.synbio.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in<em>-vitro</em> cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals.</p><p>This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 1","pages":"Pages 86-101"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24001182/pdfft?md5=fdd969b5051ee124e51a362370907009&pid=1-s2.0-S2405805X24001182-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tissue chips as headway model and incitement technology\",\"authors\":\"Prerna Suchitan Modi ,&nbsp;Abhishek Singh ,&nbsp;Awyang Chaturvedi ,&nbsp;Shailly Agarwal ,&nbsp;Raghav Dutta ,&nbsp;Ranu Nayak ,&nbsp;Alok Kumar Singh\",\"doi\":\"10.1016/j.synbio.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in<em>-vitro</em> cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals.</p><p>This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 1\",\"pages\":\"Pages 86-101\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001182/pdfft?md5=fdd969b5051ee124e51a362370907009&pid=1-s2.0-S2405805X24001182-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001182\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001182","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

芯片上组织或芯片上器官(OOC)是一种技术,通过使用先进的平台,有望在药物发现领域掀起一场变革。这是一种三维体外细胞培养模型,可在便携式微流控芯片上构建的人工微结构上模拟人体器官或组织的微环境,而无需牺牲人体或动物。文章从深入了解芯片设计和仪器开始,强调了芯片在现代科学领域的关键作用和发展的迫切需要。评论文章探讨了 OOC 技术的无数应用,展示了它对放射生物学、药物发现和筛选等领域的变革性影响,以及在太空研究中的开创性应用。除了重点介绍这些不同的应用外,文章还对 OOC 技术目前面临的挑战进行了批判性分析。文章探讨了阻碍其进步和功效的生物和技术限制,并讨论了可推动 OOC 技术发展的潜在进步和创新。通过这篇全面的评论,读者将对 OOC 技术的意义、能力和不断发展的前景有深刻的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tissue chips as headway model and incitement technology

Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals.

This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信