{"title":"通过一种独特的 ThDP 依赖性酶生物合成茴香霉素中的苄基吡咯烷前体","authors":"Yongjian Qiao, Junbo Wang, Dashan Zhang, Xiaoqing Zheng, Baixin Lin, Yongkang Huang, Yulin Liao, Zixin Deng, Lingxin Kong, Delin You","doi":"10.1016/j.synbio.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Anisomycin (compound <strong>1</strong>), a multifunctional pyrrolidine antibiotic, primarily inhibits protein biosynthesis by binding to the ribosome. Upon binding to the ribosome, the para-phenol moiety of anisomycin inserts completely into the hydrophobic crevice of the A-site and blocks the access of the incoming aminoacyl-tRNAs, disrupting peptide bond formation. Hence, the para-methoxyphenyl group serves as a starting point for developing novel anisomycin analogs with potent antifungal and insecticidal properties. However, the activation and condensation mechanism of phenylpyruvic acid has not yet been elucidated. In this study, genetic manipulations of <em>aniP</em> and its homologue <em>siAniP</em> confirmed their indispensable role in <strong>1</strong> biosynthesis. Bioinformatics analysis suggested that AniP and siAniP function as transketolase. siAniP was found to catalyzed condensation between 4-hydroxyphenylpyruvic acid (<strong>3</strong>) and glyceraldehyde (GA), initiating pyrrolidine synthesis. siAniP was specific for aromatic keto acids and tolerant of aliphatic and aromatic aldehydes, and was able to catalyze the asymmetric intermolecular condensation of two keto acids, leading to the formation of 24 α-hydroxy ketone. To the best of our knowledge, siAniP is the first TK that catalyzes the transfer of a C2 ketol and symmetrical intermolecular coupling using aromatic keto acids as donor substrates. Structural analysis, docking model construction, and site-directed mutagenesis identified that I220, H275, R322 and W391 were crucial for substrate binding. Moreover, sequence similarity network (SSN)-based genome neighborhood network (GNN) analyses of AniP suggested the widespread occurrence of the AniP-like-mediated reaction in the biosynthesis of <strong>1</strong> and its analogs, particularly in the assembly of benzylpyrrolidine. These findings not only expand the repertoire of TKs but also provide a potent biocatalyst that could be used for the structural innovation of <strong>1</strong> and its derivatives.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 1","pages":"Pages 76-85"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24001170/pdfft?md5=a3b2902611aa71c849c7eb7f73b3c4a3&pid=1-s2.0-S2405805X24001170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of the benzylpyrrolidine precursor in anisomycin by a unique ThDP-dependent enzyme\",\"authors\":\"Yongjian Qiao, Junbo Wang, Dashan Zhang, Xiaoqing Zheng, Baixin Lin, Yongkang Huang, Yulin Liao, Zixin Deng, Lingxin Kong, Delin You\",\"doi\":\"10.1016/j.synbio.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anisomycin (compound <strong>1</strong>), a multifunctional pyrrolidine antibiotic, primarily inhibits protein biosynthesis by binding to the ribosome. Upon binding to the ribosome, the para-phenol moiety of anisomycin inserts completely into the hydrophobic crevice of the A-site and blocks the access of the incoming aminoacyl-tRNAs, disrupting peptide bond formation. Hence, the para-methoxyphenyl group serves as a starting point for developing novel anisomycin analogs with potent antifungal and insecticidal properties. However, the activation and condensation mechanism of phenylpyruvic acid has not yet been elucidated. In this study, genetic manipulations of <em>aniP</em> and its homologue <em>siAniP</em> confirmed their indispensable role in <strong>1</strong> biosynthesis. Bioinformatics analysis suggested that AniP and siAniP function as transketolase. siAniP was found to catalyzed condensation between 4-hydroxyphenylpyruvic acid (<strong>3</strong>) and glyceraldehyde (GA), initiating pyrrolidine synthesis. siAniP was specific for aromatic keto acids and tolerant of aliphatic and aromatic aldehydes, and was able to catalyze the asymmetric intermolecular condensation of two keto acids, leading to the formation of 24 α-hydroxy ketone. To the best of our knowledge, siAniP is the first TK that catalyzes the transfer of a C2 ketol and symmetrical intermolecular coupling using aromatic keto acids as donor substrates. Structural analysis, docking model construction, and site-directed mutagenesis identified that I220, H275, R322 and W391 were crucial for substrate binding. Moreover, sequence similarity network (SSN)-based genome neighborhood network (GNN) analyses of AniP suggested the widespread occurrence of the AniP-like-mediated reaction in the biosynthesis of <strong>1</strong> and its analogs, particularly in the assembly of benzylpyrrolidine. These findings not only expand the repertoire of TKs but also provide a potent biocatalyst that could be used for the structural innovation of <strong>1</strong> and its derivatives.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 1\",\"pages\":\"Pages 76-85\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001170/pdfft?md5=a3b2902611aa71c849c7eb7f73b3c4a3&pid=1-s2.0-S2405805X24001170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001170\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001170","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biosynthesis of the benzylpyrrolidine precursor in anisomycin by a unique ThDP-dependent enzyme
Anisomycin (compound 1), a multifunctional pyrrolidine antibiotic, primarily inhibits protein biosynthesis by binding to the ribosome. Upon binding to the ribosome, the para-phenol moiety of anisomycin inserts completely into the hydrophobic crevice of the A-site and blocks the access of the incoming aminoacyl-tRNAs, disrupting peptide bond formation. Hence, the para-methoxyphenyl group serves as a starting point for developing novel anisomycin analogs with potent antifungal and insecticidal properties. However, the activation and condensation mechanism of phenylpyruvic acid has not yet been elucidated. In this study, genetic manipulations of aniP and its homologue siAniP confirmed their indispensable role in 1 biosynthesis. Bioinformatics analysis suggested that AniP and siAniP function as transketolase. siAniP was found to catalyzed condensation between 4-hydroxyphenylpyruvic acid (3) and glyceraldehyde (GA), initiating pyrrolidine synthesis. siAniP was specific for aromatic keto acids and tolerant of aliphatic and aromatic aldehydes, and was able to catalyze the asymmetric intermolecular condensation of two keto acids, leading to the formation of 24 α-hydroxy ketone. To the best of our knowledge, siAniP is the first TK that catalyzes the transfer of a C2 ketol and symmetrical intermolecular coupling using aromatic keto acids as donor substrates. Structural analysis, docking model construction, and site-directed mutagenesis identified that I220, H275, R322 and W391 were crucial for substrate binding. Moreover, sequence similarity network (SSN)-based genome neighborhood network (GNN) analyses of AniP suggested the widespread occurrence of the AniP-like-mediated reaction in the biosynthesis of 1 and its analogs, particularly in the assembly of benzylpyrrolidine. These findings not only expand the repertoire of TKs but also provide a potent biocatalyst that could be used for the structural innovation of 1 and its derivatives.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.