Smart Materials in Medicine最新文献

筛选
英文 中文
Potentiating sorafenib efficacy against hepatocellular carcinoma via a carrier-free nanomedicine of artesunate prodrug 通过青蒿琥酯前药的无载体纳米药物增强索拉非尼对肝细胞癌的疗效
Smart Materials in Medicine Pub Date : 2023-10-13 DOI: 10.1016/j.smaim.2023.08.003
Kun Liu , Kun Chen , Xueyang Zhang , Guang Li , Kangrui Yuan , Ling Lin , Dudu Wu , Jigang Wang , Zhiqiang Yu , Zhi Chen
{"title":"Potentiating sorafenib efficacy against hepatocellular carcinoma via a carrier-free nanomedicine of artesunate prodrug","authors":"Kun Liu ,&nbsp;Kun Chen ,&nbsp;Xueyang Zhang ,&nbsp;Guang Li ,&nbsp;Kangrui Yuan ,&nbsp;Ling Lin ,&nbsp;Dudu Wu ,&nbsp;Jigang Wang ,&nbsp;Zhiqiang Yu ,&nbsp;Zhi Chen","doi":"10.1016/j.smaim.2023.08.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.08.003","url":null,"abstract":"<div><p>Sorafenib is a first-line drug for liver cancer treatment, but its clinical efficacy is still limited by drawbacks such as drug tolerance, toxic effects, and low bioavailability. Therefore, it is urgent to find efficient ways to synergize sorafenib with other agents and increase its bioavailability in order to enhance its clinical efficacy. Herein, we report the successful development of a carrier-free nanoplatform of an artesunate prodrug to potentiate the efficacy of sorafenib against hepatocellular carcinoma. The artesunate prodrug was synthesized by conjugating artesunate and linoleic acid through a thioketone (TK) bond. This prodrug can self-assemble in an aqueous solution via a one-step precipitation method. Furthermore, the inclusion of sorafenib during the self-assembly process results in a carrier-free artesunate/sorafenib mixed nanomedicine (SA@NPs) with a uniform and stable particle size. In addition, SA@NPs possess ROS-responsive drug-releasing ability by breaking up thioketone bonds under high H<sub>2</sub>O<sub>2</sub> levels in tumors. The synergistic anticancer effects of SA@NPs have been demonstrated both <em>in vivo</em> and <em>in vitro</em>. SA@NPs can achieve significantly enhanced synergetic ferroptosis of tumor cells and show potentiated sorafenib efficacy against hepatocellular carcinoma. Moreover, SA@NPs have a tumor inhibition rate of 84.2%, which is 1.63-, 4.22-, and 1.29-fold higher than that in the experimental groups treated with free sorafenib, artesunate, and the simplified combined medication of sorafenib/artesunate, respectively. Overall, this work presents a significant advancement in the clinical chemotherapy of liver cancer and may pave the way for promising developments in the compatibility and clinical combination application of traditional Chinese medicine.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment 一种新型生物活性玻璃功能化聚醚酮支架通过调节免疫微环境促进骨再生
Smart Materials in Medicine Pub Date : 2023-09-23 DOI: 10.1016/j.smaim.2023.09.002
Mengen Zhao , Qianwen Yang , Shixiong Zhang , Chao Zhang , Zhaoying Wu
{"title":"Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment","authors":"Mengen Zhao ,&nbsp;Qianwen Yang ,&nbsp;Shixiong Zhang ,&nbsp;Chao Zhang ,&nbsp;Zhaoying Wu","doi":"10.1016/j.smaim.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.002","url":null,"abstract":"<div><p>Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. <em>In vitro</em> results showed the ADSP scaffold promoted polarization of the M2 macrophages <em>via</em> the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, <em>in vivo</em> rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical nanoprobes in biomedical diagnosis assays: Recent progress 光学纳米探针在生物医学诊断中的研究进展
Smart Materials in Medicine Pub Date : 2023-09-15 DOI: 10.1016/j.smaim.2023.09.001
Fuli Chen , Jiuchuan Guo , Jinhong Guo , Wenjun Chen , Xing Ma
{"title":"Optical nanoprobes in biomedical diagnosis assays: Recent progress","authors":"Fuli Chen ,&nbsp;Jiuchuan Guo ,&nbsp;Jinhong Guo ,&nbsp;Wenjun Chen ,&nbsp;Xing Ma","doi":"10.1016/j.smaim.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.001","url":null,"abstract":"<div><p>Biomedical assays based on optical nanoprobes play an important role in human health. Optical nanoprobes, the nanomaterials with special optical properties, are widely utilized in biomedical assays. Compared with traditional materials, the well-performed optical nanoprobes have certain properties, such as negligible interferences from the background fluorescence and scattering, simple operations and instruments, high sensitivity, and excellent specificity. This paper reviews the mechanisms, materials, and applications of optical nanoprobes. The mechanisms of optical nanoprobes involve fluorescence, phosphorescence, Förster resonance energy transfer (FRET), upconversion luminescence and chemiluminescence. Time-resolved luminescent nanoprobes are usually prepared from rare earth compounds and quantum dots (QDs). Ultralong inorganic phosphorescent nanoprobes are prepared from transition metal compounds, while ultralong organic phosphorescent nanoprobes are usually prepared from π-conjugated compound nanocrystals that exhibit a rigid confinement to suppress the non-radiative transitions and contain heavy atoms to enhance ISC. Time-resolved luminescent nanoprobes and ultralong phosphorescent nanoprobes minimize background interferences by longer luminescence lifetime. Chemiluminescent nanoprobes are usually prepared from compounds that can react with reactive oxygen species (ROS) to form peroxide bonds. Upconversion luminescent nanoprobes are usually prepared from inorganic rare earth fluoride nanocrystals. Chemiluminescent nanoprobes and upconversion luminescent nanoprobes can avoid background interferences because excitation light of shorter wavelength is not needed. FRET nanoprobes and luminescence quenching nanoprobes are prepared from a donor and an acceptor that can be linked or delinked by the analyte. Optical nanoprobes are applied in both in vitro diagnoses and in vivo imaging. The in vitro applications of optical nanoprobes include the determination of varieties of biomacromolecules and small molecules, while the in vivo imaging involves the diagnoses of inflammation and tumors.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A detailed protocol for cell force measurement by traction force microscopy 用牵引力显微镜测量细胞力的详细方案
Smart Materials in Medicine Pub Date : 2023-08-22 DOI: 10.1016/j.smaim.2023.08.002
Man Zhang , Yu Zhang , Peng Wang , Qian Sun , Xin Wang , Yi Cao , Qiang Wei
{"title":"A detailed protocol for cell force measurement by traction force microscopy","authors":"Man Zhang ,&nbsp;Yu Zhang ,&nbsp;Peng Wang ,&nbsp;Qian Sun ,&nbsp;Xin Wang ,&nbsp;Yi Cao ,&nbsp;Qiang Wei","doi":"10.1016/j.smaim.2023.08.002","DOIUrl":"10.1016/j.smaim.2023.08.002","url":null,"abstract":"<div><p>Cellular traction forces (CTFs) are generated by adherent cells and involved in regulating migration, morphology, and homeostasis. Accurate measurement of CTFs is crucial for understanding fundamental biological processes such as morphogenesis, angiogenesis, and wound healing. However, directly measuring CTFs, which typically range in the nanonewton scale, is challenging. Cellular traction force microscopy (TFM) has been developed to quantify CTFs, but detailed operational procedures and complex data analysis limit its applicability. In this study, hydrogels embedded with fluo-spheres serve as the substrate for TFM measurement under a detailed TFM protocol. Additionally, we designed a user-friendly program for easy parameter setting. An open-source program called Python Fourier transform traction cytometry (pyFTTC) is introduced for data analysis, utilizing particle image velocimetry (PIV) to calculate the traction force from a batch of images. Cross-correlation based PIV and L2-regularized FTTC are applied to all images for data analysis. This article provides a straightforward protocol for quantifying CTFs in standard laboratories, facilitating both cell biology studies and biomaterials development.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48035886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway 海洋天然产物木霉素B通过IL-6介导的STAT3/JAK信号通路抑制人脑胶质瘤细胞增殖并促进细胞凋亡
Smart Materials in Medicine Pub Date : 2023-08-06 DOI: 10.1016/j.smaim.2023.08.001
Xingliang Dai , Junjuan Fan , Dongdong Liu , Huaixu Li , Lei Shu , Peng Gao , Senhua Chen , Xianwen Wang
{"title":"The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway","authors":"Xingliang Dai ,&nbsp;Junjuan Fan ,&nbsp;Dongdong Liu ,&nbsp;Huaixu Li ,&nbsp;Lei Shu ,&nbsp;Peng Gao ,&nbsp;Senhua Chen ,&nbsp;Xianwen Wang","doi":"10.1016/j.smaim.2023.08.001","DOIUrl":"10.1016/j.smaim.2023.08.001","url":null,"abstract":"<div><p>Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus <em>Trichobotrys effusa</em> 4729 (denoted ADF<sub>Te4729</sub>). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47631530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Octopus -inspired gelatin-methacrylate scaffolds loaded with hBMSC-derived exosomes promote wound healing by regulating macrophage polarization 章鱼启发明胶-甲基丙烯酸酯支架装载hbmscs衍生的外泌体通过调节巨噬细胞极化促进伤口愈合
Smart Materials in Medicine Pub Date : 2023-07-28 DOI: 10.1016/j.smaim.2023.07.002
Dong Yan , Guoqi Cao , Shumei Mao , Zehan Shang , Chengde Li , Guangdong Zhou , Xinping Li , Huitang Xia , Yibing Wang
{"title":"Octopus -inspired gelatin-methacrylate scaffolds loaded with hBMSC-derived exosomes promote wound healing by regulating macrophage polarization","authors":"Dong Yan ,&nbsp;Guoqi Cao ,&nbsp;Shumei Mao ,&nbsp;Zehan Shang ,&nbsp;Chengde Li ,&nbsp;Guangdong Zhou ,&nbsp;Xinping Li ,&nbsp;Huitang Xia ,&nbsp;Yibing Wang","doi":"10.1016/j.smaim.2023.07.002","DOIUrl":"10.1016/j.smaim.2023.07.002","url":null,"abstract":"<div><p>Excessive local movement and inflammation are common problems in the process of wound repair, which lead to failure of later repair. In order to solve this problem, inspired by the octopus sucker structure, we successfully developed a photocrosslinked hydrogel that can adsorb skin surface fascia. In addition, extracellular vesicles from human bone marrow mesenchymal stem cells are encapsulated in the octopus like sucker structure. The morphology and structure of extracellular vesicles in bone marrow mesenchymal stem cells were detected by scanning electron microscopy and particle size analysis. Through iTRAQ, we tested the expression of angiogenesis related proteins contained in extracellular vesicles. Design small interfering RNA to verify its impact on angiogenic related genes and proteins. Macrophage polarization was detected by immunofluorescence. The expression of new blood vessels was detected by constructing a skin defect model and injecting microfil contrast agent into the heart. When the sucker is firmly adsorbed on the damaged wound, the sucker will slowly degrade. Using its delivery system, it is observed that the extracellular vesicles are released in the wound. Through iTRAQ, it was found that the angiogenesis regulator (angiopoietin-like 4, angiopoietin-like 3 and aminopeptidase N) released in the extracellular vesicles regulates collagen deposition, angiogenesis, and inhibits macrophage aggregation. In addition, the slowly released extracellular vesicles will further inhibit the polarization of proinflammatory macrophages. This biological behavior can provide an adaptive microenvironment for skin regeneration at an early stage. This new bionic octopus sucker structure gel creates a good microenvironment for wound repair and shortens the wound healing time. Therefore, this hydrogel inspired by the octopus sucker structure may provide a good strategy and commercial value for promoting wound repair treatment in clinical practice.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45540138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent advances in three-dimensional printing in cardiovascular devices: Bench and bedside applications 心血管设备三维打印的最新进展:实验和床边应用
Smart Materials in Medicine Pub Date : 2023-07-17 DOI: 10.1016/j.smaim.2023.07.001
Yihong Shen , Jie Cui , Xiao Yu , Jiahui Song , Pengfei Cai , Wanxin Guo , Yue Zhao , Jinglei Wu , Hongbing Gu , Binbin Sun , Xiumei Mo
{"title":"Recent advances in three-dimensional printing in cardiovascular devices: Bench and bedside applications","authors":"Yihong Shen ,&nbsp;Jie Cui ,&nbsp;Xiao Yu ,&nbsp;Jiahui Song ,&nbsp;Pengfei Cai ,&nbsp;Wanxin Guo ,&nbsp;Yue Zhao ,&nbsp;Jinglei Wu ,&nbsp;Hongbing Gu ,&nbsp;Binbin Sun ,&nbsp;Xiumei Mo","doi":"10.1016/j.smaim.2023.07.001","DOIUrl":"10.1016/j.smaim.2023.07.001","url":null,"abstract":"<div><p>Three-dimensional (3D) printing is emerging as an innovative technology, which is widely used in cardiovascular disease at bench and bedside. During the last decade, with the development of 3D printing industry, many 3D printed models have been used in clinic, because it can provide the advantage of haptic feedback, direct manipulation, and enhanced doctors’ understanding of cardiovascular anatomy and underlying pathologies. In addition to the preparation of 3D printed models, 3D printing technology also shows great application potential in cardiovascular regenerative medicine because it has the advantages of integrating cells, cytokines and materials. Although cardiovascular regenerative medicine application still has a gap between bench and bedside, this gap is gradually narrowing with the development of new materials and new technology of 3D printing recently. In this review, we firstly analyze the characteristics and clinical needs of cardiovascular diseases, and introduce the concept and category of 3D printing technology. Secondly, we summarize the application of 3D printed models, stents, vascular graft, vascular network, and heart organs at bench and bedside. In the end, we discuss the challenges and future perspectives of 3D printing in cardiovascular diseases.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45522308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Magnetosurgery: Principles, design, and applications 磁外科:原理、设计和应用
Smart Materials in Medicine Pub Date : 2023-07-07 DOI: 10.1016/j.smaim.2023.06.008
Daniil V. Kladko, Vladimir V. Vinogradov
{"title":"Magnetosurgery: Principles, design, and applications","authors":"Daniil V. Kladko,&nbsp;Vladimir V. Vinogradov","doi":"10.1016/j.smaim.2023.06.008","DOIUrl":"10.1016/j.smaim.2023.06.008","url":null,"abstract":"<div><p>Magnetosurgery, the guidance or actuation of surgical instruments during operations using magnetic forces, has become a global trend in minimally invasive surgeries performed remotely. Despite the promise of the magnetosurgery platform, only select surgeries are compatible with this technology, and issues related to the engineering, materials used, and applications are still not fully understood. In this review, we focus on the engineering and material basis of magnetosurgery in order to summarize and expand existing knowledge to create a versatile platform with multiple surgical applications.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42403478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bioactive carbon dots for tissue engineering applications 组织工程应用的生物活性炭点
Smart Materials in Medicine Pub Date : 2023-06-23 DOI: 10.1016/j.smaim.2023.06.006
Qi Zong , Haolin Chen , Yi Zhao , Jinming Wang , Jun Wu
{"title":"Bioactive carbon dots for tissue engineering applications","authors":"Qi Zong ,&nbsp;Haolin Chen ,&nbsp;Yi Zhao ,&nbsp;Jinming Wang ,&nbsp;Jun Wu","doi":"10.1016/j.smaim.2023.06.006","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.06.006","url":null,"abstract":"<div><p>Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials with characteristic sizes of less than 10 ​nm. Recently, bioactive CDs have made remarkable achievements in wound healing, bone and cartilage repair, neural regeneration, and myocardium regeneration owing to their unique physicochemical properties and excellent biocompatibility, which have significantly promoted the advancement of tissue engineering. Herein, we summarize the applications of bioactive CDs in tissue engineering. First, we briefly introduce the characteristics and synthesis methods of bioactive CDs. Subsequently, we review the applications of bioactive CDs in wound healing, bone and cartilage tissue engineering, neural tissue engineering, and cardiac tissue engineering in detail. Finally, we discuss the challenges and prospects of bioactive CDs in tissue engineering.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time actuation of a dielectric elastomer actuator neuroprosthesis for facial paralysis 介电弹性体致动器神经假体用于面瘫的实时驱动
Smart Materials in Medicine Pub Date : 2023-06-21 DOI: 10.1016/j.smaim.2023.06.003
Stefania Konstantinidi , Carlotta Imholz , Thomas Martinez , Amine Benouhiba , Armando Walter , Yoan Civet , Nicole Lindenblatt , Yves Perriard
{"title":"Real-time actuation of a dielectric elastomer actuator neuroprosthesis for facial paralysis","authors":"Stefania Konstantinidi ,&nbsp;Carlotta Imholz ,&nbsp;Thomas Martinez ,&nbsp;Amine Benouhiba ,&nbsp;Armando Walter ,&nbsp;Yoan Civet ,&nbsp;Nicole Lindenblatt ,&nbsp;Yves Perriard","doi":"10.1016/j.smaim.2023.06.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.06.003","url":null,"abstract":"<div><p>Facial paralysis is a highly burdening condition, resulting in a patient's inability to move his mimic musculature on one or both sides of his face. This condition compromises the patient's communication and facial expressions, and thus dramatically reduces his quality of life. The current treatment for chronic facial paralysis relies on a complex reconstructive surgery. This publication proposes a novel, less invasive approach for dynamic facial reanimation. The use of a smart material, namely a Dielectric Elastomer Actuator (DEA) is proposed for facial motion restoration, thus avoiding the traditional two-stage free muscle transfer procedure and allowing for a faster recovery of the patient. DEAs are a type of electroactive polymers, showing promising properties similar to natural muscles such as the fact that they are soft, lightweight and allow for large displacements. As a result, a study of the facial muscles and neural interfaces, notably the ones responsible for mouth movement, was performed, in order to implement a realistic setup. In this paper, a non-invasive neural interface based on myoelectric signal is used in order to establish a real-time control of the actuator. Visible motion of a skin model is produced in real time, by synchronizing the actuator to the activity of a healthy muscle, with a maximal delay of 108 ​ms resulting from the signal processing and a delay of less than 30 ​ms related to the actuation of the DEA. This shows that the usage of DEA combined with a neural interface presents a promising approach for treatment of facial paralysis.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49735022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信