Smart Materials in Medicine最新文献

筛选
英文 中文
Externally triggered drug delivery systems 外部触发给药系统
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.004
{"title":"Externally triggered drug delivery systems","authors":"","doi":"10.1016/j.smaim.2024.08.004","DOIUrl":"10.1016/j.smaim.2024.08.004","url":null,"abstract":"<div><p>Externally triggered drug delivery systems empower patients or healthcare providers to utilize external stimuli to initiate drug release from implanted systems. This approach holds significant potential for clinical disease management, offering appealing features like enhanced patient adherence through the elimination of needles and medication reminders. Additionally, it facilitates personalized medicine by granting patients control over the timing, dosage, and duration of drug release. Moreover, it enables precise drug delivery to targeted locations where external stimuli are applied. Advances in materials science, nanotechnology, chemistry, and biology have been pivotal in driving the development of these systems. This review presents an overview of the progress in research on drug release systems responsive to external stimuli, such as light, ultrasound, magnetic fields, and temperature. It discusses the construction strategies of externally triggered drug delivery systems, the mechanisms governing triggered drug release, and their applications in disease management.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259018342400036X/pdfft?md5=ee01046e5097b41b02ce327cb03cf82e&pid=1-s2.0-S259018342400036X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing 通过搅拌摩擦加工制造镁基生物陶瓷增强复合材料
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.006
{"title":"Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing","authors":"","doi":"10.1016/j.smaim.2024.08.006","DOIUrl":"10.1016/j.smaim.2024.08.006","url":null,"abstract":"<div><p>Improving the degradation performance and enhancing the biocompatibility are the main challenges of Mg-based biodegradable implants. In this study, a nano-hydroxyapatite-enhanced (nHA) Mg matrix composite was fabricated via friction stir processing and characterised, including microstructure, mechanical, <em>in vitro</em> degradation properties, and cytocompatibility. Hydroxyapatite is renowned for its superior bone compatibility, promoting healing responses and tissue growth. Friction stirring created a gradient grain structure in the alloy, with the stir zone exhibiting the highest grain refinement. The stir zone also contained most of the incorporated nHA and exhibited a strong texture with grains preferentially oriented along the [0001] direction. Immersion and polarisation experiments showed an increase in the FSPed WE43-nHA's corrosion resistance due to the refined microstructure. The treatment also caused a shift in the corrosion mode of the alloy from localized to uniform corrosion despite some localized corrosion associated with the nHA. Cytocompatibility tests in human osteoblast (HOB) cell lines indicated good biocompatibility in the Mg-nHA alloy, with cells exhibiting relatively healthy morphology and increased live cell count. Friction stir processing is a viable manufacturing option for creating Mg-based metal matrix composites with improved corrosion resistance and good biocompatibility.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000383/pdfft?md5=01da0722a394ab3580f60d4c0a5c786a&pid=1-s2.0-S2590183424000383-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances of surface modification to alleviate oxidative stress-induced valve degeneration 表面改性在缓解氧化应激引起的瓣膜退化方面取得进展
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.003
{"title":"Advances of surface modification to alleviate oxidative stress-induced valve degeneration","authors":"","doi":"10.1016/j.smaim.2024.08.003","DOIUrl":"10.1016/j.smaim.2024.08.003","url":null,"abstract":"<div><p>Valvular heart disease (VHD) is a significant public health threat, with heart valve replacement surgery being the standard treatment for severe cases. Despite of advancements in artificial heart valves, their longevity remains limited due to <em>in vivo</em> degeneration. In consequence, there is an urgent need for effective methods to enhance the durability of artificial heart valves. Because oxidative stress (OS) is a key driving factor contributing to the failure of cardiovascular implants, this review focuses on how OS plays a critical role in heart valve degeneration, and its relationship with four major physiological mechanisms: extracellular matrix (ECM) degradation, immune response, thrombosis and lipid metabolism. By highlighting OS as a potential therapeutic target, we explore surface modification strategies that incorporate these fundamental mechanisms, refer to passive approaches including OS elimination, immunosuppression, blocking surface-degradation active groups, and anticoagulation, and active approaches such as regulating biological function recovery, and surface endothelial remodeling. These strategies aim to delay or reverse artificial valves degeneration via combining with the perspective of OS regulation, ultimately extending the prognosis period after heart valve replacement surgeries.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000358/pdfft?md5=5a7244bc8eea6cdb5537dd99e66e1a4f&pid=1-s2.0-S2590183424000358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The state-of-the-art therapeutic paradigms against sepsis 最先进的败血症治疗范例
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.005
{"title":"The state-of-the-art therapeutic paradigms against sepsis","authors":"","doi":"10.1016/j.smaim.2024.08.005","DOIUrl":"10.1016/j.smaim.2024.08.005","url":null,"abstract":"<div><p>Sepsis frequently leads to life-threatening organ failure due to an in appropriate response by the body to bacterial, viral, and fungal infections. In recent years, there has been an increasing interest in using nanoparticles to develop biomarkers and drug delivery systems that have significantly improved the treatment of infectious diseases. Herein, we update the most recent development of nanoparticle-based therapeutics for sepsis treatment. This article begins with a brief overview of how sepsis is triggered and its associated diseases. It also explores the differences between traditional and modern treatment approaches. Afterward, the reasons for embracing nanotechnology-based therapies for sepsis are summarized, including their ability to reduce inflammation, provide antioxidant effects, regulate cell signaling pathways, manage reactive oxygen and nitrogen species (RONS) production, control autophagy and apoptosis, clear lipopolysaccharides (LPS) from the blood, inhibits the formation of cell-free DNA and cytokine storms. Furthermore, the special emphasis is on updating the use of nanotechnology-mediated drug delivery systems, such as nanoparticles, liposomes, and exosomes, in the treatment of sepsis caused by various microorganisms. Moreover, we also discuss polymer mediated therapy and some dynamic therapeutic aspects in septecemia disease. In addition, the article highlights the challenges and a limitation associated with using drug delivery for sepsis treatment and expresses the hope that this review will accelerate the development of more effective sepsis therapies and facilitate the transition from research to practical clinical application.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000371/pdfft?md5=73faa1af54ec459660fbf2846d7da408&pid=1-s2.0-S2590183424000371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy 用于肿瘤化疗光动力联合疗法的线粒体靶向原药纳米颗粒
Smart Materials in Medicine Pub Date : 2024-08-08 DOI: 10.1016/j.smaim.2024.08.002
{"title":"Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy","authors":"","doi":"10.1016/j.smaim.2024.08.002","DOIUrl":"10.1016/j.smaim.2024.08.002","url":null,"abstract":"<div><p>Prodrug nanoparticles have been explored as an effective means for drug delivery because of controlled drug release in a stimulus-responsive manner. Organellar-targeted drug delivery could enhance the efficacy of cancer therapy. Herein, pH and light dual responsive mitochondrial targeted prodrug nanoparticles were designed to deliver both chemotherapeutic drugs and photosensitisers for enhanced antitumour efficacy. The prodrug nanoparticles (TPP-PEI-PheoA/ALG=DOX NPs, TPPAD NPs) are composed of a light-responsive mitochondrial targeted prodrug (triphenylphosphonium and pheophorbide A modified polyethyleneimine, TPP-PEI-PheoA) and a pH-responsive prodrug (doxorubicin conjugated alginate with Schiff's base bond, ALG=DOX). TPPAD NPs were prepared through electrostatic interaction. TPPAD NPs could simultaneously deliver DOX and PheoA to the tumour site by passive targeting effect, release drugs in a designed mode and deliver drugs to the target organelles. Moreover, TPPAD NP-based PDT could induce immunogenic cell death of tumour cells, thereby activating the immune system. TPPAD NPs greatly enhanced antitumour efficacy by combinational therapy. Taken together, this prodrug nanoparticle platform has appeared to be a simple and smart nanomedicine for targeted tumour combinational treatment.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000346/pdfft?md5=0483f0943427c786176ed58f8c6861d9&pid=1-s2.0-S2590183424000346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary delivery of bioadhesive nanoparticles for ALI improvement and ARDS prevention with a single-dose administration 生物黏附性纳米颗粒的肺部给药,单剂量给药改善 ALI 和预防 ARDS
Smart Materials in Medicine Pub Date : 2024-08-06 DOI: 10.1016/j.smaim.2024.08.001
{"title":"Pulmonary delivery of bioadhesive nanoparticles for ALI improvement and ARDS prevention with a single-dose administration","authors":"","doi":"10.1016/j.smaim.2024.08.001","DOIUrl":"10.1016/j.smaim.2024.08.001","url":null,"abstract":"<div><p>Acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is the major cause of intensive care unit death worldwide. ALI/ARDS is a common condition characterized by a storm of potent inflammatory cytokines. Lung delivery of glucocorticoids (GCs) by inhalation is a potential approach for ALI treatment and ARDS prevention; however, its efficacy is limited by the rapid clearance of GCs in lungs. In this study, we developed surface-modified poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs) with bioadhesive properties for local delivery to the epidermis of lung tissues, which exhibited prolonged release profile of payloads following intratracheal spraying administration. Compared with that of non-adhesive nanoparticles (NNPs), BNPs showed significantly enhanced adhesion and prolonged retention within lung tissues <em>in vivo</em>. Lipopolysaccharide (LPS)-induced ALI mice treated with betamethasone dipropionate (BD)-loaded BNPs showed significantly fewer lung histological alterations and less lung inflammation than those administered free BD or BD-loaded NNPs, indicating the enhanced therapeutic efficacy of BD/BNPs in ALI. In contrast, the features of ARDS were observed in the animal models without any treatments. Our findings demonstrated that pulmonary delivery of BNPs can maintain their same surface structures and continuously form covalent connections with the contacted tissues, emphasizing their potential to improve the therapeutic efficacy in ALI and prevent from ARDS.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000334/pdfft?md5=1acb277ba6a445c71eb2a6dca0ba19a4&pid=1-s2.0-S2590183424000334-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in smart biomaterials that modulate the bone microenvironment to promote bone defect repair in diabetes mellitus 调节骨微环境以促进糖尿病患者骨缺损修复的智能生物材料的研究进展
Smart Materials in Medicine Pub Date : 2024-07-31 DOI: 10.1016/j.smaim.2024.07.002
{"title":"Advances in smart biomaterials that modulate the bone microenvironment to promote bone defect repair in diabetes mellitus","authors":"","doi":"10.1016/j.smaim.2024.07.002","DOIUrl":"10.1016/j.smaim.2024.07.002","url":null,"abstract":"<div><p>Diabetes mellitus (DM) is a chronic metabolic disorder that can affect the balance of bone metabolism and bone microenvironment, leading to impaired fracture healing. There are several underlying mechanisms which contributing to the impaired diabetic bone microenvironment such as hyperglycemia, the production of advanced glycation end products (AGEs), inflammation, and oxidative stress, etc. Recent studies have achieved great progress in developing novel smart biomaterials in improving the diabetic bone microenvironment to promote diabetic fracture healing. In this paper, we reviewed the mechanisms on DM-induced impaired fracture healing. Meanwhile, we also summarized the smart biomaterials used to improve the local microenvironment of diabetic fractures healing, which provides a novel perspective for the future treatment of fractures in diabetic patients.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000322/pdfft?md5=389278c154f1b3ca48f4e98b893a0972&pid=1-s2.0-S2590183424000322-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic-inorganic nHA-Gelatin/Alginate high strength macroporous cryogel promotes bone regeneration 有机-无机 nHA-明胶/海藻酸高强度大孔低温凝胶促进骨再生
Smart Materials in Medicine Pub Date : 2024-07-16 DOI: 10.1016/j.smaim.2024.07.001
{"title":"Organic-inorganic nHA-Gelatin/Alginate high strength macroporous cryogel promotes bone regeneration","authors":"","doi":"10.1016/j.smaim.2024.07.001","DOIUrl":"10.1016/j.smaim.2024.07.001","url":null,"abstract":"<div><p>Macroporous cryogel has the advantages of nutrient exchange and cell growth, and is an ideal material for tissue regeneration. In order to strengthen the machenical properties of cryogel for the widely use, a high strength gelatin/sodium alginate/nano hydroxyapatite (nHA) porous cryogel (GA-HA cryogel) was prepared by a simple freeze-thaw process. The mechanical strength of GA-HA cryogel increased significantly with the increase of nHA content. In vitro studies showed that GA-HA cryogel had good biocompatibility and no obvious cytotoxicity to MC3T3-E1 cells. The results of alkaline phosphatase activity assay and osteocalcin immunofluorescence staining showed that GA-HA1 porous hydrogel system could significantly increase the expression of MC3T3-E1 alkaline phosphatase and osteocalcin when the content of nHA was 1 ​%. In addition, porous GA-HA cryogel showed good performance in promoting bone regeneration in rat skull defect model. Therefore, the high-strength double network cryogel prepared in this study can provide new applications in bone repair and tissue regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000310/pdfft?md5=7107858a61aa1c69c50bd249f818b8d9&pid=1-s2.0-S2590183424000310-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of an uricase/catalase/curcumin-co-loaded drug delivery system and its effect on hyper-uric acid-induced kidney injury 尿酸盐/催化剂/姜黄素载药系统的构建及其对高尿酸诱导的肾损伤的影响
Smart Materials in Medicine Pub Date : 2024-06-06 DOI: 10.1016/j.smaim.2024.05.002
Yang Zhang , Xiaobo Li , Chunling Liang , Jianjia Feng , Chuyi Yu , Weichi Jiang , Keneng Cai , Wanying Chen , Wenli Cai , Feng Zeng , Qin Xu , Peng Chen , Jianming Liang
{"title":"Construction of an uricase/catalase/curcumin-co-loaded drug delivery system and its effect on hyper-uric acid-induced kidney injury","authors":"Yang Zhang ,&nbsp;Xiaobo Li ,&nbsp;Chunling Liang ,&nbsp;Jianjia Feng ,&nbsp;Chuyi Yu ,&nbsp;Weichi Jiang ,&nbsp;Keneng Cai ,&nbsp;Wanying Chen ,&nbsp;Wenli Cai ,&nbsp;Feng Zeng ,&nbsp;Qin Xu ,&nbsp;Peng Chen ,&nbsp;Jianming Liang","doi":"10.1016/j.smaim.2024.05.002","DOIUrl":"10.1016/j.smaim.2024.05.002","url":null,"abstract":"<div><p>Hyper-uric acid (UA)-induced kidney injury (HAKI) is caused by the deposition of excess blood UA into the kidneys. We confined molecules of uricase (URI), catalase (CAT), and curcumin (Cur) to a single structure (UC/Cur) while retaining their enzymatic activities via a cross-linking complexation reaction between tannic acid and FeCl<sub>3</sub> for treating HAKI. Simultaneously, bovine serum albumin (BSA)-UC/Cur nanoparticles were successfully prepared by interlinking the disulfide bonds of BSA with the enzyme complex via Tris(2-carboxyethyl) phosphine(TCEP) to form sulfhydryl groups. BSA-UC/Cur significantly attenuated MSU-induced NLRP3 inflammasome pathway activation and apoptosis in NRK-52e cells by eliminating UA crystals and intracellular reactive oxygen species. More importantly, treatment with BSA-UC/Cur stabilized blood UA concentrations and lowered proximal tubular protein levels, mitochondrial swelling, and fibrotic areas, renducing the expression of matrix metalloproteinase (MMP)2, MMP9, and NLRP3 while, increasing the expression of tight-junction proteins ZO1 and occludin as well as that of TIMP-1, in HAKI model rats. In addition, BSA-UC/Cur nanoparticles reduced the subpopulation ratios of CD8<sup>+</sup> T cells and M1 macrophages and increased those of M2 macrophages and Treg cells. Preliminary in-vivo trials showed that long-term intravenous treatment with BSA-UC/Cur is safe. Therefore, BSA-UC/Cur could be a potential nanotherapeutic agent for HAKI.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000309/pdfft?md5=bc8ccf487b71dccaa694c54387ebf42d&pid=1-s2.0-S2590183424000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart materials in medicine 5th anniversary 智能材料在医学中的应用 5 周年
Smart Materials in Medicine Pub Date : 2024-05-14 DOI: 10.1016/j.smaim.2024.05.001
{"title":"Smart materials in medicine 5th anniversary","authors":"","doi":"10.1016/j.smaim.2024.05.001","DOIUrl":"10.1016/j.smaim.2024.05.001","url":null,"abstract":"","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000206/pdfft?md5=dea59be70eb58a316b21c04ee5e55613&pid=1-s2.0-S2590183424000206-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信