Smart Materials in Medicine最新文献

筛选
英文 中文
Nanobody-as versatile tool emerging in autoimmune diseases 纳米体--自身免疫性疾病中出现的多功能工具
Smart Materials in Medicine Pub Date : 2024-10-18 DOI: 10.1016/j.smaim.2024.10.003
{"title":"Nanobody-as versatile tool emerging in autoimmune diseases","authors":"","doi":"10.1016/j.smaim.2024.10.003","DOIUrl":"10.1016/j.smaim.2024.10.003","url":null,"abstract":"<div><div>Nanobody (Nb) is derived from the variable domain of heavy-chain antibody (HCAb), naturally displaying notable properties like nano-scale size, exceptional stability, high specificity, low immunogenicity, and cryptic epitope accessibility. These features contribute to its great therapeutic potential as a valuable research tool across diverse diseases, especially autoimmune diseases (AIDs). Caplacizumab (Cablivi®) is the first nanobody drug approved for treating acquired thrombotic thrombocytopenic purpura (aTTP). This review summarizes the biomolecular structure, usage of Nb as a foundation of recombinant constructs, and biochemical properties of nanobodies. As attractive therapeutic candidates, many clinical trials of Nbs have been conducted, elucidating potential therapeutic strategies for AIDs. Therefore, the preclinical development and application of Nbs in AIDs are emphasized throughout this review.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation 生物活性 MXene 水凝胶通过改善自噬和肌肉神经支配促进骨骼肌的结构和功能再生
Smart Materials in Medicine Pub Date : 2024-10-12 DOI: 10.1016/j.smaim.2024.10.002
{"title":"Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation","authors":"","doi":"10.1016/j.smaim.2024.10.002","DOIUrl":"10.1016/j.smaim.2024.10.002","url":null,"abstract":"<div><div>Complete skeletal muscle regeneration after traumatic injuries remains a challenge due to impaired regenerative capability and dysregulated microenvironments. Autophagy plays a crucial role in the muscle regeneration process by regulating myogenic and non-myogenic cells. Herein, we report a bioactive MXene hydrogel (FPGM) capable of upregulating autophagy and increasing muscle innervation to restore skeletal muscle structure and function. FPGM possessed excellent electrical conductivity, tissue adhesive ability and antioxidation, which could eliminate excess reactive oxygen species to reduce oxidative stress and decrease the secretion of pro-inflammatory cytokine. FPGM upregulated the autophagy level of myoblasts and promoted the migration and tube formation of endothelial cells as well as myogenic differentiation with negligible toxicity. FPGM accelerated muscle fiber formation and skeletal muscle regeneration by improving autophagy, which could regulate microenvironment through raising M2 macrophages to alleviate excessive inflammation, facilitating angiogenesis and decreasing fibrous scar tissue formation <em>in vivo</em>. Importantly, FPGM could efficiently restore muscle function by improving muscle innervation, tibialis anterior compound muscle action potential amplitude and neuromuscular conduction. This work demonstrates that bioactive MXene hydrogel should be a promising candidate for complete skeletal muscle regeneration.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of smart material in the repair of intervertebral disc degeneration 智能材料在修复椎间盘退变方面的进展
Smart Materials in Medicine Pub Date : 2024-10-09 DOI: 10.1016/j.smaim.2024.10.001
{"title":"Progress of smart material in the repair of intervertebral disc degeneration","authors":"","doi":"10.1016/j.smaim.2024.10.001","DOIUrl":"10.1016/j.smaim.2024.10.001","url":null,"abstract":"<div><div>Intervertebral disc degeneration (IVDD) is a prevalent condition leading to back and leg pain as well as chronic disability. It refers to the degeneration of intervertebral disc structure, including the nucleus pulposus, annulus fibrosus, and cartilage endplate. Along with degeneration process, these components can deteriorate, causing pain and functional impairment. To address IVDD, researchers are exploring the use of smart materials as novel therapeutic approaches. This review aims to summarize the application of various stimuli-responsive smart materials (endogenous and exogenous stimuli-responsive materials) in the repair for Intervertebral disc. These smart materials, such as responsive hydrogels, shape-memory polymers, and nanoparticle-based delivery systems, have shown considerable potential in achieving targeted drug delivery and tissue regeneration, and improving clinical outcomes. The ongoing advancement of smart materials towards successful clinical translation holds promise for improving treatment outcomes for IVDD patients, providing more effective and safer therapeutic options.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming 通过纺丝编程:同时制造和编程的电纺形状记忆聚合物纤维
Smart Materials in Medicine Pub Date : 2024-09-24 DOI: 10.1016/j.smaim.2024.09.002
{"title":"Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming","authors":"","doi":"10.1016/j.smaim.2024.09.002","DOIUrl":"10.1016/j.smaim.2024.09.002","url":null,"abstract":"<div><div>Porous shape memory polymer (SMP) scaffolds are promising ‘smart’ materials for potential use in a wide range of biomedical applications. Electrospinning provides an approach to produce fibrous SMP scaffolds to enhance their porosity, mass transfer, and flexibility. Here, we studied the effects of electrospinning parameters (rotating collector rotational speed and solvent) on shape memory and mechanical properties of a biostable thermoplastic polyurethane (PUr) SMP. Scanning electron microscopy confirmed that fiber diameter and tortuosity could be tuned using varied collector rotation speeds and/or solvents. Mechanical properties, including modulus, tensile strength, and ultimate elongation, were tuned independently of chemistry based on variations in fiber architectures. All scaffolds demonstrated shape memory properties. Additionally, due to strains that are trapped in the fibers during the electrospinning process, SMP fibers are programmed into a strained, temporary shape during the fabrication step. These fibers can be immediately triggered to recover to a non-strained primary shape after fabrication to reduce sample preparation time and complexity. As a proof-of-concept, bacterial protease-responsive SMPs were electrospun and exposed to <em>S. aureus</em> in programmed secondary shapes. Upon exposure to bacteria, these SMPs underwent shape recovery, which resulted in reduced bacterial attachment and biofilm formation. These materials could be employed as bacteria-responsive wound dressings in future work. Overall, electrospinning provides a valuable tool for tuning mechanical and shape memory properties independently from chemistry and for programming SMPs during fabrication to enable scale-up of electrospun SMP scaffolds.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-activated mechanochemical reactions for controllable biomedical applications 用于可控生物医学应用的超声激活机械化学反应
Smart Materials in Medicine Pub Date : 2024-09-14 DOI: 10.1016/j.smaim.2024.09.001
{"title":"Ultrasound-activated mechanochemical reactions for controllable biomedical applications","authors":"","doi":"10.1016/j.smaim.2024.09.001","DOIUrl":"10.1016/j.smaim.2024.09.001","url":null,"abstract":"<div><div>Intramolecular bonds in small organic molecules, macromolecules, and organic-inorganic hybrids are broken or formed by ultrasound-activated mechanical force that can be applied with spatial and temporal precision for contactless external control of mechanochemical reactions. Ultrasound featuring non-invasiveness, high tissue penetration, and spatiotemporal controllability has shown great potential in controlling the activation of mechanochemical reactions such as chemical bond scission, natural enzyme activation, and catalytic radical generation for targeted drug or gene therapy. Here, we comprehensively summarize the latest research and future trends in ultrasound-activated mechanochemical reactions for smart biomedical applications. First, the mechanism of ultrasound-activated mechanochemical reactions will be outlined. Then, the types of mechanochemical reactions will be carefully discussed. After that, the representative biomedical applications have been summarized from a unique perspective. Finally, we systematically emphasize the current challenges and future outlooks to guide the rational design of ultrasound-activated drug release over conventional drug-loaded therapies. We believe that this review will substantially facilitate the progression and widespread utilization of ultrasound-activated mechanochemical reactions in biomedical applications.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Externally triggered drug delivery systems 外部触发给药系统
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.004
{"title":"Externally triggered drug delivery systems","authors":"","doi":"10.1016/j.smaim.2024.08.004","DOIUrl":"10.1016/j.smaim.2024.08.004","url":null,"abstract":"<div><p>Externally triggered drug delivery systems empower patients or healthcare providers to utilize external stimuli to initiate drug release from implanted systems. This approach holds significant potential for clinical disease management, offering appealing features like enhanced patient adherence through the elimination of needles and medication reminders. Additionally, it facilitates personalized medicine by granting patients control over the timing, dosage, and duration of drug release. Moreover, it enables precise drug delivery to targeted locations where external stimuli are applied. Advances in materials science, nanotechnology, chemistry, and biology have been pivotal in driving the development of these systems. This review presents an overview of the progress in research on drug release systems responsive to external stimuli, such as light, ultrasound, magnetic fields, and temperature. It discusses the construction strategies of externally triggered drug delivery systems, the mechanisms governing triggered drug release, and their applications in disease management.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259018342400036X/pdfft?md5=ee01046e5097b41b02ce327cb03cf82e&pid=1-s2.0-S259018342400036X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing 通过搅拌摩擦加工制造镁基生物陶瓷增强复合材料
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.006
{"title":"Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing","authors":"","doi":"10.1016/j.smaim.2024.08.006","DOIUrl":"10.1016/j.smaim.2024.08.006","url":null,"abstract":"<div><p>Improving the degradation performance and enhancing the biocompatibility are the main challenges of Mg-based biodegradable implants. In this study, a nano-hydroxyapatite-enhanced (nHA) Mg matrix composite was fabricated via friction stir processing and characterised, including microstructure, mechanical, <em>in vitro</em> degradation properties, and cytocompatibility. Hydroxyapatite is renowned for its superior bone compatibility, promoting healing responses and tissue growth. Friction stirring created a gradient grain structure in the alloy, with the stir zone exhibiting the highest grain refinement. The stir zone also contained most of the incorporated nHA and exhibited a strong texture with grains preferentially oriented along the [0001] direction. Immersion and polarisation experiments showed an increase in the FSPed WE43-nHA's corrosion resistance due to the refined microstructure. The treatment also caused a shift in the corrosion mode of the alloy from localized to uniform corrosion despite some localized corrosion associated with the nHA. Cytocompatibility tests in human osteoblast (HOB) cell lines indicated good biocompatibility in the Mg-nHA alloy, with cells exhibiting relatively healthy morphology and increased live cell count. Friction stir processing is a viable manufacturing option for creating Mg-based metal matrix composites with improved corrosion resistance and good biocompatibility.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000383/pdfft?md5=01da0722a394ab3580f60d4c0a5c786a&pid=1-s2.0-S2590183424000383-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances of surface modification to alleviate oxidative stress-induced valve degeneration 表面改性在缓解氧化应激引起的瓣膜退化方面取得进展
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.003
{"title":"Advances of surface modification to alleviate oxidative stress-induced valve degeneration","authors":"","doi":"10.1016/j.smaim.2024.08.003","DOIUrl":"10.1016/j.smaim.2024.08.003","url":null,"abstract":"<div><p>Valvular heart disease (VHD) is a significant public health threat, with heart valve replacement surgery being the standard treatment for severe cases. Despite of advancements in artificial heart valves, their longevity remains limited due to <em>in vivo</em> degeneration. In consequence, there is an urgent need for effective methods to enhance the durability of artificial heart valves. Because oxidative stress (OS) is a key driving factor contributing to the failure of cardiovascular implants, this review focuses on how OS plays a critical role in heart valve degeneration, and its relationship with four major physiological mechanisms: extracellular matrix (ECM) degradation, immune response, thrombosis and lipid metabolism. By highlighting OS as a potential therapeutic target, we explore surface modification strategies that incorporate these fundamental mechanisms, refer to passive approaches including OS elimination, immunosuppression, blocking surface-degradation active groups, and anticoagulation, and active approaches such as regulating biological function recovery, and surface endothelial remodeling. These strategies aim to delay or reverse artificial valves degeneration via combining with the perspective of OS regulation, ultimately extending the prognosis period after heart valve replacement surgeries.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000358/pdfft?md5=5a7244bc8eea6cdb5537dd99e66e1a4f&pid=1-s2.0-S2590183424000358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The state-of-the-art therapeutic paradigms against sepsis 最先进的败血症治疗范例
Smart Materials in Medicine Pub Date : 2024-09-01 DOI: 10.1016/j.smaim.2024.08.005
{"title":"The state-of-the-art therapeutic paradigms against sepsis","authors":"","doi":"10.1016/j.smaim.2024.08.005","DOIUrl":"10.1016/j.smaim.2024.08.005","url":null,"abstract":"<div><p>Sepsis frequently leads to life-threatening organ failure due to an in appropriate response by the body to bacterial, viral, and fungal infections. In recent years, there has been an increasing interest in using nanoparticles to develop biomarkers and drug delivery systems that have significantly improved the treatment of infectious diseases. Herein, we update the most recent development of nanoparticle-based therapeutics for sepsis treatment. This article begins with a brief overview of how sepsis is triggered and its associated diseases. It also explores the differences between traditional and modern treatment approaches. Afterward, the reasons for embracing nanotechnology-based therapies for sepsis are summarized, including their ability to reduce inflammation, provide antioxidant effects, regulate cell signaling pathways, manage reactive oxygen and nitrogen species (RONS) production, control autophagy and apoptosis, clear lipopolysaccharides (LPS) from the blood, inhibits the formation of cell-free DNA and cytokine storms. Furthermore, the special emphasis is on updating the use of nanotechnology-mediated drug delivery systems, such as nanoparticles, liposomes, and exosomes, in the treatment of sepsis caused by various microorganisms. Moreover, we also discuss polymer mediated therapy and some dynamic therapeutic aspects in septecemia disease. In addition, the article highlights the challenges and a limitation associated with using drug delivery for sepsis treatment and expresses the hope that this review will accelerate the development of more effective sepsis therapies and facilitate the transition from research to practical clinical application.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000371/pdfft?md5=73faa1af54ec459660fbf2846d7da408&pid=1-s2.0-S2590183424000371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy 用于肿瘤化疗光动力联合疗法的线粒体靶向原药纳米颗粒
Smart Materials in Medicine Pub Date : 2024-08-08 DOI: 10.1016/j.smaim.2024.08.002
{"title":"Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy","authors":"","doi":"10.1016/j.smaim.2024.08.002","DOIUrl":"10.1016/j.smaim.2024.08.002","url":null,"abstract":"<div><p>Prodrug nanoparticles have been explored as an effective means for drug delivery because of controlled drug release in a stimulus-responsive manner. Organellar-targeted drug delivery could enhance the efficacy of cancer therapy. Herein, pH and light dual responsive mitochondrial targeted prodrug nanoparticles were designed to deliver both chemotherapeutic drugs and photosensitisers for enhanced antitumour efficacy. The prodrug nanoparticles (TPP-PEI-PheoA/ALG=DOX NPs, TPPAD NPs) are composed of a light-responsive mitochondrial targeted prodrug (triphenylphosphonium and pheophorbide A modified polyethyleneimine, TPP-PEI-PheoA) and a pH-responsive prodrug (doxorubicin conjugated alginate with Schiff's base bond, ALG=DOX). TPPAD NPs were prepared through electrostatic interaction. TPPAD NPs could simultaneously deliver DOX and PheoA to the tumour site by passive targeting effect, release drugs in a designed mode and deliver drugs to the target organelles. Moreover, TPPAD NP-based PDT could induce immunogenic cell death of tumour cells, thereby activating the immune system. TPPAD NPs greatly enhanced antitumour efficacy by combinational therapy. Taken together, this prodrug nanoparticle platform has appeared to be a simple and smart nanomedicine for targeted tumour combinational treatment.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000346/pdfft?md5=0483f0943427c786176ed58f8c6861d9&pid=1-s2.0-S2590183424000346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信