Biomimetic 3D printing of photocrosslinkable biodegradable elastomers-modified hybrid scaffolds as instructive platforms for bone tissue regeneration

Q1 Engineering
Panyu Zhou , Jiayi Wang , Hongrui Wang , Hao Pan , Hengsong Shi , Yu Fu , Yuan Yuan , Yang Wang , Qi Gan , Changsheng Liu
{"title":"Biomimetic 3D printing of photocrosslinkable biodegradable elastomers-modified hybrid scaffolds as instructive platforms for bone tissue regeneration","authors":"Panyu Zhou ,&nbsp;Jiayi Wang ,&nbsp;Hongrui Wang ,&nbsp;Hao Pan ,&nbsp;Hengsong Shi ,&nbsp;Yu Fu ,&nbsp;Yuan Yuan ,&nbsp;Yang Wang ,&nbsp;Qi Gan ,&nbsp;Changsheng Liu","doi":"10.1016/j.smaim.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>3D printing is regarded as an ideal method for large-scale bone defect repair. A rapid curing rate and strong mechanical properties throughout the product's shelf life are key development goals in 3D-printed bone repair biomaterials. To achieve this goal, we developed a 3D-printable organic/inorganic composite ink featuring rapid curing and highly customizable properties. After 3D printing, the nanocomposite ink of poly (glyceryl sebacate)-2-chlorocinnamoyl chloride/β-tricalcium phosphate (PGS-CC/β-TCP) undergoes short-term light crosslinking to form a biomimetic network of inorganic-organic composite materials. The resulting bone repair scaffold possesses excellent mechanical properties, significantly promotes cell adhesion and proliferation, and demonstrates good <em>in vitro</em> osteogenic activity, angiogenic performance, and mineralization capability. Moreover, the PGS-CC/β-TCP 3D-printed scaffold exhibits good degradation performance, retaining its mechanical properties even after four weeks of degradation. The PGS-CC(1:2)/β-TCP composite scaffold can effectively repair severe cranial bone defects in rats, showing optimal <em>in vivo</em> osteogenic and degradation performance at 6 and 12 weeks. With these advantages, this innovative 3D-printed biomaterial has great clinical application prospects for large segment bone repair and provides new opportunities for other complex reconstructions.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"6 1","pages":"Pages 95-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

3D printing is regarded as an ideal method for large-scale bone defect repair. A rapid curing rate and strong mechanical properties throughout the product's shelf life are key development goals in 3D-printed bone repair biomaterials. To achieve this goal, we developed a 3D-printable organic/inorganic composite ink featuring rapid curing and highly customizable properties. After 3D printing, the nanocomposite ink of poly (glyceryl sebacate)-2-chlorocinnamoyl chloride/β-tricalcium phosphate (PGS-CC/β-TCP) undergoes short-term light crosslinking to form a biomimetic network of inorganic-organic composite materials. The resulting bone repair scaffold possesses excellent mechanical properties, significantly promotes cell adhesion and proliferation, and demonstrates good in vitro osteogenic activity, angiogenic performance, and mineralization capability. Moreover, the PGS-CC/β-TCP 3D-printed scaffold exhibits good degradation performance, retaining its mechanical properties even after four weeks of degradation. The PGS-CC(1:2)/β-TCP composite scaffold can effectively repair severe cranial bone defects in rats, showing optimal in vivo osteogenic and degradation performance at 6 and 12 weeks. With these advantages, this innovative 3D-printed biomaterial has great clinical application prospects for large segment bone repair and provides new opportunities for other complex reconstructions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信