光交联可生物降解弹性体改性复合支架的仿生3D打印作为骨组织再生的指导平台

Q1 Engineering
Panyu Zhou , Jiayi Wang , Hongrui Wang , Hao Pan , Hengsong Shi , Yu Fu , Yuan Yuan , Yang Wang , Qi Gan , Changsheng Liu
{"title":"光交联可生物降解弹性体改性复合支架的仿生3D打印作为骨组织再生的指导平台","authors":"Panyu Zhou ,&nbsp;Jiayi Wang ,&nbsp;Hongrui Wang ,&nbsp;Hao Pan ,&nbsp;Hengsong Shi ,&nbsp;Yu Fu ,&nbsp;Yuan Yuan ,&nbsp;Yang Wang ,&nbsp;Qi Gan ,&nbsp;Changsheng Liu","doi":"10.1016/j.smaim.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>3D printing is regarded as an ideal method for large-scale bone defect repair. A rapid curing rate and strong mechanical properties throughout the product's shelf life are key development goals in 3D-printed bone repair biomaterials. To achieve this goal, we developed a 3D-printable organic/inorganic composite ink featuring rapid curing and highly customizable properties. After 3D printing, the nanocomposite ink of poly (glyceryl sebacate)-2-chlorocinnamoyl chloride/β-tricalcium phosphate (PGS-CC/β-TCP) undergoes short-term light crosslinking to form a biomimetic network of inorganic-organic composite materials. The resulting bone repair scaffold possesses excellent mechanical properties, significantly promotes cell adhesion and proliferation, and demonstrates good <em>in vitro</em> osteogenic activity, angiogenic performance, and mineralization capability. Moreover, the PGS-CC/β-TCP 3D-printed scaffold exhibits good degradation performance, retaining its mechanical properties even after four weeks of degradation. The PGS-CC(1:2)/β-TCP composite scaffold can effectively repair severe cranial bone defects in rats, showing optimal <em>in vivo</em> osteogenic and degradation performance at 6 and 12 weeks. With these advantages, this innovative 3D-printed biomaterial has great clinical application prospects for large segment bone repair and provides new opportunities for other complex reconstructions.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"6 1","pages":"Pages 95-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic 3D printing of photocrosslinkable biodegradable elastomers-modified hybrid scaffolds as instructive platforms for bone tissue regeneration\",\"authors\":\"Panyu Zhou ,&nbsp;Jiayi Wang ,&nbsp;Hongrui Wang ,&nbsp;Hao Pan ,&nbsp;Hengsong Shi ,&nbsp;Yu Fu ,&nbsp;Yuan Yuan ,&nbsp;Yang Wang ,&nbsp;Qi Gan ,&nbsp;Changsheng Liu\",\"doi\":\"10.1016/j.smaim.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D printing is regarded as an ideal method for large-scale bone defect repair. A rapid curing rate and strong mechanical properties throughout the product's shelf life are key development goals in 3D-printed bone repair biomaterials. To achieve this goal, we developed a 3D-printable organic/inorganic composite ink featuring rapid curing and highly customizable properties. After 3D printing, the nanocomposite ink of poly (glyceryl sebacate)-2-chlorocinnamoyl chloride/β-tricalcium phosphate (PGS-CC/β-TCP) undergoes short-term light crosslinking to form a biomimetic network of inorganic-organic composite materials. The resulting bone repair scaffold possesses excellent mechanical properties, significantly promotes cell adhesion and proliferation, and demonstrates good <em>in vitro</em> osteogenic activity, angiogenic performance, and mineralization capability. Moreover, the PGS-CC/β-TCP 3D-printed scaffold exhibits good degradation performance, retaining its mechanical properties even after four weeks of degradation. The PGS-CC(1:2)/β-TCP composite scaffold can effectively repair severe cranial bone defects in rats, showing optimal <em>in vivo</em> osteogenic and degradation performance at 6 and 12 weeks. With these advantages, this innovative 3D-printed biomaterial has great clinical application prospects for large segment bone repair and provides new opportunities for other complex reconstructions.</div></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":\"6 1\",\"pages\":\"Pages 95-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183424000553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

3D打印被认为是大规模骨缺损修复的理想方法。在整个产品保质期内,快速的固化速度和强大的机械性能是3d打印骨修复生物材料的关键发展目标。为了实现这一目标,我们开发了一种3d打印的有机/无机复合油墨,具有快速固化和高度可定制的特性。3D打印后,聚癸二酸甘油-2-氯肉桂酰氯/β-磷酸三钙(PGS-CC/β-TCP)纳米复合油墨进行短期光交联,形成无机-有机复合材料仿生网络。所制备的骨修复支架具有优异的力学性能,显著促进细胞粘附和增殖,并具有良好的体外成骨活性、血管生成性能和矿化能力。此外,PGS-CC/β-TCP 3d打印支架具有良好的降解性能,即使在降解四周后仍保持其机械性能。PGS-CC(1:2)/β-TCP复合支架可以有效修复大鼠严重颅骨缺损,在6周和12周时表现出最佳的体内成骨和降解性能。具有这些优点,这种创新的3d打印生物材料在大节段骨修复方面具有很大的临床应用前景,也为其他复杂的重建提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomimetic 3D printing of photocrosslinkable biodegradable elastomers-modified hybrid scaffolds as instructive platforms for bone tissue regeneration

Biomimetic 3D printing of photocrosslinkable biodegradable elastomers-modified hybrid scaffolds as instructive platforms for bone tissue regeneration
3D printing is regarded as an ideal method for large-scale bone defect repair. A rapid curing rate and strong mechanical properties throughout the product's shelf life are key development goals in 3D-printed bone repair biomaterials. To achieve this goal, we developed a 3D-printable organic/inorganic composite ink featuring rapid curing and highly customizable properties. After 3D printing, the nanocomposite ink of poly (glyceryl sebacate)-2-chlorocinnamoyl chloride/β-tricalcium phosphate (PGS-CC/β-TCP) undergoes short-term light crosslinking to form a biomimetic network of inorganic-organic composite materials. The resulting bone repair scaffold possesses excellent mechanical properties, significantly promotes cell adhesion and proliferation, and demonstrates good in vitro osteogenic activity, angiogenic performance, and mineralization capability. Moreover, the PGS-CC/β-TCP 3D-printed scaffold exhibits good degradation performance, retaining its mechanical properties even after four weeks of degradation. The PGS-CC(1:2)/β-TCP composite scaffold can effectively repair severe cranial bone defects in rats, showing optimal in vivo osteogenic and degradation performance at 6 and 12 weeks. With these advantages, this innovative 3D-printed biomaterial has great clinical application prospects for large segment bone repair and provides new opportunities for other complex reconstructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信