Zubair Ahmed , Zhong Wang , Muhammed Adil , Ijaz Ahmad Bhatti , Huiliang Cao
{"title":"Bright antimicrobial surfaces based on Schottky interfaces: From light illumination to bacterial charging","authors":"Zubair Ahmed , Zhong Wang , Muhammed Adil , Ijaz Ahmad Bhatti , Huiliang Cao","doi":"10.1016/j.smaim.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The growing threat of resistant bacterial infections is a global concern. Therefore, it is crucial to discover new antimicrobial agents or alternative mechanisms to address this issue. This article explores the potential of smart antimicrobial surfaces based on Schottky interfaces for mitigating bacterial infections. The article proposes combining the biological features of bacterial cells with the physics of Schottky-Mott theory to describe and explain the disinfection behaviors of Schottky interfaces. The physicochemical properties and associated characterization methods of Schottky interfaces are examined to uncover their smart pathways leading to disinfection. The fabrication of antimicrobial Schottky interfaces is explored, focusing on techniques such as sputtering, evaporation, chemical deposition, and ion implantation. The advantages and challenges of each method are highlighted, along with recent research on their use to create antimicrobial surfaces over different activating procedures, ranging from light adsorption to bacterial charging and capacitive charge storage. Overall, this article provides a comprehensive overview of the knowledge and advancements in smart antimicrobial surfaces based on Schottky interfaces, emphasizing their potential in combating bacterial infections and offering insights into their properties, fabrication, and applications. The article concludes by illuminating the need for additional research to completely understand the dark behaviors of Schottky interfaces against microbes and harness their full potential in smart coating developments.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"6 1","pages":"Pages 67-94"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183425000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The growing threat of resistant bacterial infections is a global concern. Therefore, it is crucial to discover new antimicrobial agents or alternative mechanisms to address this issue. This article explores the potential of smart antimicrobial surfaces based on Schottky interfaces for mitigating bacterial infections. The article proposes combining the biological features of bacterial cells with the physics of Schottky-Mott theory to describe and explain the disinfection behaviors of Schottky interfaces. The physicochemical properties and associated characterization methods of Schottky interfaces are examined to uncover their smart pathways leading to disinfection. The fabrication of antimicrobial Schottky interfaces is explored, focusing on techniques such as sputtering, evaporation, chemical deposition, and ion implantation. The advantages and challenges of each method are highlighted, along with recent research on their use to create antimicrobial surfaces over different activating procedures, ranging from light adsorption to bacterial charging and capacitive charge storage. Overall, this article provides a comprehensive overview of the knowledge and advancements in smart antimicrobial surfaces based on Schottky interfaces, emphasizing their potential in combating bacterial infections and offering insights into their properties, fabrication, and applications. The article concludes by illuminating the need for additional research to completely understand the dark behaviors of Schottky interfaces against microbes and harness their full potential in smart coating developments.