Hydrogel wound dressings containing bioactive compounds originated from traditional Chinese herbs: A review

Q1 Engineering
Dan Yang , Hailan Chen , Hua Wei , An Liu , Dai-Xu Wei , Jing Chen
{"title":"Hydrogel wound dressings containing bioactive compounds originated from traditional Chinese herbs: A review","authors":"Dan Yang ,&nbsp;Hailan Chen ,&nbsp;Hua Wei ,&nbsp;An Liu ,&nbsp;Dai-Xu Wei ,&nbsp;Jing Chen","doi":"10.1016/j.smaim.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Various factors can cause skin defects, resulting in the loss of physiological functions and even death due to severe concurrent infection. Dressings are often clinically used to fully cover the wounds to improve healing. Hydrogel wound dressings can be loaded with therapeutic compounds (<em>e.g.</em>, curcumin) within their three-dimensional networks to enable the in situ delivery of compounds at skin defects for wound healing. In recent decades, natural herbal active components have gradually gained worldwide recognition owing to their safe and diverse therapeutic effects, and an increasing number of bioactive components can be loaded into hydrogels or directly act as hydrogel matrices to enhance safety and achieve the desired therapeutic effects. In this review, twelve bioactive compounds from natural Chinese herbs that can promote wound healing and their mechanism of action are summarized, and the latest research progress in the use of Chinese herbal hydrogels for wound treatment is reviewed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 153-165"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000467/pdfft?md5=30175c670f61a2af412ea348271066d2&pid=1-s2.0-S2590183423000467-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Various factors can cause skin defects, resulting in the loss of physiological functions and even death due to severe concurrent infection. Dressings are often clinically used to fully cover the wounds to improve healing. Hydrogel wound dressings can be loaded with therapeutic compounds (e.g., curcumin) within their three-dimensional networks to enable the in situ delivery of compounds at skin defects for wound healing. In recent decades, natural herbal active components have gradually gained worldwide recognition owing to their safe and diverse therapeutic effects, and an increasing number of bioactive components can be loaded into hydrogels or directly act as hydrogel matrices to enhance safety and achieve the desired therapeutic effects. In this review, twelve bioactive compounds from natural Chinese herbs that can promote wound healing and their mechanism of action are summarized, and the latest research progress in the use of Chinese herbal hydrogels for wound treatment is reviewed.

Abstract Image

中药生物活性成分水凝胶创面敷料综述
多种因素可引起皮肤缺损,导致生理功能丧失,甚至因严重的并发感染而死亡。临床上经常使用敷料来完全覆盖伤口以促进愈合。水凝胶伤口敷料可以在其三维网络中装载治疗性化合物(例如,姜黄素),以便在皮肤缺陷处原位递送化合物以实现伤口愈合。近几十年来,天然草药活性成分因其安全性和多样化的治疗效果逐渐得到世界范围的认可,越来越多的生物活性成分可以被加载到水凝胶中或直接作为水凝胶基质,以提高安全性并达到预期的治疗效果。本文综述了天然中草药中12种促进创面愈合的生物活性化合物及其作用机制,并对中草药水凝胶用于创面治疗的最新研究进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信