steel research international最新文献

筛选
英文 中文
Investigation of P2O5 on the Break Temperature and Phase Composition of Slag from the Double Slag Converter Steelmaking Process P2O5 对双渣转炉炼钢过程中炉渣断裂温度和相组成的影响研究
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-15 DOI: 10.1002/srin.202400507
Gao Yang, Xiangning Meng, Rui Yang, Ruiqi Zeng, Wei Li
{"title":"Investigation of P2O5 on the Break Temperature and Phase Composition of Slag from the Double Slag Converter Steelmaking Process","authors":"Gao Yang, Xiangning Meng, Rui Yang, Ruiqi Zeng, Wei Li","doi":"10.1002/srin.202400507","DOIUrl":"https://doi.org/10.1002/srin.202400507","url":null,"abstract":"Herein, the influence of P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> on the break temperature and phase composition of slag from the double slag converter steelmaking process is investigated comprehensively. The composition and micromorphology of crystallized phase are analyzed by X‐Ray diffractometer and scanning electron microscope equipped with energy dispersive spectrometer. The results reveal that the break temperature of slag increases owing to an increase of P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> content. When the P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> content is 2%, the break temperature is 1198 °C, and it increases to 1209 °C for the slag with 4% P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>. With the increase of P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> content from 2% to 8%, the activation energy for viscous flow shows an upward trend. The crystallized phase at the same temperature with different P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> contents remains nearly unchanged, but the diffraction peak intensity is different. When the P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> content remains constant, a decrease in temperature results in significant changes in the micromorphology of crystallized phases. The present results improve the knowledge about the P‐rich slag, and are also significant in optimizing the double slag converter steelmaking process.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High‐Temperature Oxidation of Fe–Si Alloys in Atmospheres Containing 2.0% SO2 + 5.0% O2 含 2.0% SO2 + 5.0% O2 的大气中铁硅合金的高温氧化作用
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-15 DOI: 10.1002/srin.202400547
Guangming Cao, Wentao Song, Hengxiang Yu, Yongcheng Bi, Zhenyu Liu
{"title":"High‐Temperature Oxidation of Fe–Si Alloys in Atmospheres Containing 2.0% SO2 + 5.0% O2","authors":"Guangming Cao, Wentao Song, Hengxiang Yu, Yongcheng Bi, Zhenyu Liu","doi":"10.1002/srin.202400547","DOIUrl":"https://doi.org/10.1002/srin.202400547","url":null,"abstract":"The microstructure and composition of the scales formed are examined after being exposed to atmosphere containing 2.0% SO<jats:sub>2</jats:sub> + 5.0% O<jats:sub>2</jats:sub> for 60 min in the temperature range of 900–1200 °C. The composition of the scale post‐oxidation primarily varies with temperature rather than silicon content. FeS exhibits a melting temperature of 950 °C, whereas FeSi<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> melts at 1150 °C. Two mechanisms for FeS formation are proposed. Eutectoid transformation of molten FeS occurs during subsequent cooling, resulting in lamellar FeS + Fe–S–O compounds. Above 1150 °C, the melt of Fe<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub> further increases the Fe diffusion rate. This dual‐liquefaction mechanism involving FeS and Fe<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub> accounts for the anomalous oxidative mass gain observed in Fe–Si alloys exposed to a sulfur‐containing atmosphere.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Static Thermochemical Model of MIDREX: Genetic Algorithm Validation and Green Ironmaking with Hydrogen and Coke Oven Gas Injection MIDREX 静态热化学模型:遗传算法验证和注入氢气和焦炉煤气的绿色炼铁技术
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-13 DOI: 10.1002/srin.202400082
Sunil Yadav, C. Srishilan, Ajay Kumar Shukla
{"title":"Static Thermochemical Model of MIDREX: Genetic Algorithm Validation and Green Ironmaking with Hydrogen and Coke Oven Gas Injection","authors":"Sunil Yadav, C. Srishilan, Ajay Kumar Shukla","doi":"10.1002/srin.202400082","DOIUrl":"https://doi.org/10.1002/srin.202400082","url":null,"abstract":"This work presents the development and validation of a static thermochemical model for predicting process parameters in the MIDREX shaft furnace, a method used for producing direct reduced iron from lump ore and pellets. Industrial plant data is used to validate the model. Furthermore, the model is utilized to analyze the process based on different parameters. Genetic algorithm (GA) is used to estimate the critical parameters of the process (like reaction factors and extent of reactions) and validate the model with industrial data. Further investigations are conducted to assess the possibility of replacing the reformer gas (bustle gas) with hydrogen and coke oven gas (COG) to make the process greener and almost free from carbon emissions, using a systematic approach of overall heat balance, using already developed coupled thermodynamics and kinetics‐based model, and further using those data to estimate the reaction factors and extent of reactions using GA to be used in the static model. The results demonstrate the feasibility of replacing hydrogen and COG without much adverse effect on the process outcomes; however, this results in better metallization and reduced carbon footprint of the process effectively.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Biochar and Coke Blends for Slag Foaming Applications in Electric Arc Furnace Steelmaking 评估生物炭和焦炭混合物在电弧炉炼钢中的炉渣发泡应用
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-13 DOI: 10.1002/srin.202400518
Christopher DiGiovanni, Delin Li, Ka Wing Ng, Xianai Huang
{"title":"Evaluation of Biochar and Coke Blends for Slag Foaming Applications in Electric Arc Furnace Steelmaking","authors":"Christopher DiGiovanni, Delin Li, Ka Wing Ng, Xianai Huang","doi":"10.1002/srin.202400518","DOIUrl":"https://doi.org/10.1002/srin.202400518","url":null,"abstract":"The electric arc furnace (EAF) is a promising approach to decarbonize the iron and steel industry. In EAF steelmaking, injecting carbon into the molten slag remains crucial for creating a foamy slag, which enhances the energy efficiency of the process and protects the furnace. Biochar (BC) has emerged as a potential alternative to traditional fossil carbon for slag foaming. However, fully replacing fossil carbon with BC poses technical challenges. In this study, the partial replacement of fossil carbon with BC is considered, in the form of a petroleum coke (petcoke) and BC blend. Interestingly, a blend of petcoke and BC matches or possibly outperforms either carbon type individually, due to a synergistic effect. Using an induction furnace to simulate EAF conditions, a synthetic slag is melted, and injection carbon is added into the slag layer. The slag foaming effectiveness of petcoke, BC, and three blend cases are studied. Thermogravimetric analysis reveals that the BC is more reactive with slag compared to petcoke, which leads to an initial high intensity of CO generation. However, the CO generation was not continuous or consistent. All experimental results are combined to propose a mechanistic description of the slag foaming behavior of BC blends.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Rolling Force and Friction in Hot Steel Rolling with Water‐Based Nanolubrication 使用水基纳米润滑剂轧制热钢时的轧制力和摩擦力分析
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400229
Hui Wu, Shengnan Yuan, Fei Lin, Mengyuan Ren, Jingru Yan, Muyuan Zhou, Zhao Xing, Sihai Jiao, Zhengyi Jiang
{"title":"Analysis of Rolling Force and Friction in Hot Steel Rolling with Water‐Based Nanolubrication","authors":"Hui Wu, Shengnan Yuan, Fei Lin, Mengyuan Ren, Jingru Yan, Muyuan Zhou, Zhao Xing, Sihai Jiao, Zhengyi Jiang","doi":"10.1002/srin.202400229","DOIUrl":"https://doi.org/10.1002/srin.202400229","url":null,"abstract":"Water‐based nanolubricants are playing increasingly important roles in hot steel rolling over the past decade regarding environmental protection, energy saving, and product quality improvement. The contact friction between the work roll and the workpiece under water‐based nanolubrication, however, has been scarcely investigated. In this study, water‐based lubricants containing 0–4.0 wt% TiO<jats:sub>2</jats:sub> nanoparticles are employed in hot rolling of a mild steel under different rolling conditions. The Taguchi method is used for the orthogonal design of the hot‐rolling tests to sequence the key factors that affect the rolling force in terms of importance. The as‐synthesized water‐based nanolubricants indicate excellent dispersion stability after standing for 24 h, which can be readily restored to the original state via manual shaking. The coefficient of friction (COF) during the steady‐state hot steel rolling is inversely calculated using a flow stress model developed from hot compression testing. A novel COF model for hot rolling of the steel is thus proposed through multiple linear regression. It is found that the result of linear regression agreed well with that of inverse calculation, indicating that the proposed COF model is applicable. Finally, the lubrication mechanism is examined through a boundary lubrication regime determined from a modified lubricant film thickness model.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industrial Trials on the Cleanliness Improvement, Microstructure Refinement and Performance Enhancement of Rare‐Earth‐Treated 75Cr1 Steel 稀土处理 75Cr1 钢的清洁度改善、微观结构细化和性能提升工业试验
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400576
Pengzhao Zhang, Ze Meng, Guangqiang Li, Chang Liu, Xijie Wang, Yu Liu
{"title":"Industrial Trials on the Cleanliness Improvement, Microstructure Refinement and Performance Enhancement of Rare‐Earth‐Treated 75Cr1 Steel","authors":"Pengzhao Zhang, Ze Meng, Guangqiang Li, Chang Liu, Xijie Wang, Yu Liu","doi":"10.1002/srin.202400576","DOIUrl":"https://doi.org/10.1002/srin.202400576","url":null,"abstract":"The effects of rare‐earth treatment on cleanliness, corrosion resistance, microstructure, and mechanical properties of 75Cr1 steel are investigated by industrial trial. In the results, it is shown that the appropriate La–Ce addition can effectively remove oxygen and sulfur elements in steel, and total oxygen (T.O) and S contents decrease by 45% and 33%, respectively. After La–Ce treatment, the typical inclusions in steel are transformed from (Mg–Al–O)–CaS composite inclusions to RE<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>–CaS inclusion with a small amount of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The number and average size of inclusions in steel are significantly reduced, and the morphology of inclusions changes from irregular shape to spherical shape, which contributes to the improvement of the corrosion resistance of 75Cr1 steel. Furthermore, the pearlite spacing and the grain size are refined, the tensile and yield strengths are significantly enhanced in the test of La–Ce‐treated steel. The 75Cr1 steels are fabricated in small batches, which avoids the nozzle clogging resulted by rare‐earth treatment during continuous casting. It implies that rare‐earth treatment to improve the quality of 75Cr1 steel shows the strong industrial applicability.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Interface Slag from the Production of Construction Steel SiO2 和 Al2O3 对建筑钢材生产过程中产生的电弧界面渣的热物理性质和发泡指数的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400476
Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova
{"title":"Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Interface Slag from the Production of Construction Steel","authors":"Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova","doi":"10.1002/srin.202400476","DOIUrl":"https://doi.org/10.1002/srin.202400476","url":null,"abstract":"Viscosity, density, and surface tension of an industrial electric arc furnace (EAF) slag from production of construction steel with varying SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> contents are investigated using a rotating viscometer and the maximum bubble pressure method. In addition, influence of thermophysical properties on foaming index is discussed. To predict the behavior of the solid phase in the slag at different temperatures, thermodynamic calculations are performed using FactSage 8.1 software. The experiments demonstratethat SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> act as network formers in the studied slag systems, resulting in increased viscosity values in the liquid‐dominant region and decreased density of the slag. The presence of alumina and silica altered the behavior of the slag in the liquid‐dominant region, shifting the breaking point of the slags. Furthermore, the addition of silica decreases the surface tension of the slag, confirming its role as a surfactant. However, the addition of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> increases the surface tension due to the high surface tension of pure alumina. Consequently, the foaming index of the slag can increase by ≈40%, primarily due to the polymerization of the slag.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods 通过最大气泡压力法和摆动坩埚法测定液态低硫锰硼钢的密度、表面张力和粘度
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400252
Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova
{"title":"Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods","authors":"Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova","doi":"10.1002/srin.202400252","DOIUrl":"https://doi.org/10.1002/srin.202400252","url":null,"abstract":"In this study, the thermophysical properties of low‐sulfur manganese–boron steel with varying boron and sulfur contents at different temperatures are investigated. Density and surface tension are measured between 1550 and 1650 °C using the maximum bubble pressure method, while viscosity is examined between 1530 and 1570 °C using an improved oscillating crucible viscometer. The methods yield results with low error, consistent with existing literature. The density of the base steel decreases from 7057 ± 25 kg m<jats:sup>−3</jats:sup> at 1550 °C to 6843 ± 85 kg m<jats:sup>−3</jats:sup> at 1650 °C. The addition of boron (up to 57 ppm) and sulfur (up to 130 ppm) does not significantly change the density. Sulfur, increasing from 39 to 130 ppm, reduces the surface tension from 1416 ± 12 to 1302 ± 9 mN m<jats:sup>−1</jats:sup> at 1650 °C. Boron's effect on surface tension varies, possibly influenced by other elements like oxygen. Viscosity ranges from 5.74 to 6.44 mPa s, with boron and sulfur additions causing minimal changes, the largest deviation being 8%. In these results, valuable data for the simulation, modeling, control, and optimization of liquid steel processing are provided.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution Mechanism of Nonmetallic Inclusions in Fe‐1.5Al‐xSi (x = 0.5–3.0 wt%) Alloyed Steels Fe-1.5Al-xSi (x = 0.5-3.0 wt%) 合金钢中非金属夹杂物的演变机制
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400491
Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park
{"title":"Evolution Mechanism of Nonmetallic Inclusions in Fe‐1.5Al‐xSi (x = 0.5–3.0 wt%) Alloyed Steels","authors":"Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park","doi":"10.1002/srin.202400491","DOIUrl":"https://doi.org/10.1002/srin.202400491","url":null,"abstract":"The effects of Si content of steel melts containing 1.5% Al as well as alloying sequence of Si and Al on the evolution of inclusions are investigated. The SiO<jats:sub>2</jats:sub> inclusion is primarily formed when Si (=0.5–3.0 wt%) is added to the melts at 1873 K, and the area fraction (AF) of the inclusions decreases over time. The subsequent addition of 1.5% Al to the Si‐alloyed steel (i.e., 3.0Si→1.5Al) increases the AF of inclusions due to the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The population density function (PDF) analysis for the preferential Si alloying shows a fractal distribution, indicating that the inclusions grow by a collision mechanism. PDF analysis shows a lognormal distribution because Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> inclusion is formed and grows after subsequent Al alloying. Alternatively, when 1.5% Al is preferentially added to steel, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> clusters are formed. The AF of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster decreases over time. When 3.0% Si is subsequently added to the Al‐alloyed steel (i.e., 1.5Al→3.0Si), singular Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles are mainly observed. Because the Al alloying results in the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> regardless of the alloying sequence and Si content, it is important to float up and separate Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster to improve the cleanliness of high‐Si‐Al‐alloyed steels such as electrical steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on Applicability of Lime as Desulfurization Agent for Molten Cast Iron 石灰作为熔融铸铁脱硫剂的适用性研究
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400416
Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike
{"title":"Investigation on Applicability of Lime as Desulfurization Agent for Molten Cast Iron","authors":"Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike","doi":"10.1002/srin.202400416","DOIUrl":"https://doi.org/10.1002/srin.202400416","url":null,"abstract":"In this study, the prospective application of lime as a desulfurization agent for the cast‐iron industry is technically examined. This investigation encompasses a series of laboratory experiments conducted under atmospheric conditions, mirroring industrial settings by exploring two distinct methods for introducing lime powder onto and into molten cast iron using surface addition and gas injection techniques. Deoxidation agents (FeSi, SiC, and Al) are also incorporated to enhance the lime‐based desulfurization results. Based on the findings of this study, it is indicated that lime can be a reliable cast‐iron desulfurization agent by reaching an end‐sulfur concentration of &lt;0.015 wt%, thus providing an opportunity for a sustainable alternative for the foundry industry. In this study, it is also revealed that adding a small quantity of Al is more effective at enhancing desulfurization results than Si due to its role in increasing the proportion of liquid slag during desulfurization. However, caution is advised regarding the limit of aluminum concentration in cast iron (0.1 wt%), and treatment temperatures should be kept above 1400 °C to prevent counterproductive effects and undesirable defects in the product.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信