Guo-Xing Qiu, Ya-Cheng Zhang, Yong-Kun Yang, Xiao-Ming Li
{"title":"Research Status of Large-Size Carbides in High-Carbon Chromium Bearing Steel","authors":"Guo-Xing Qiu, Ya-Cheng Zhang, Yong-Kun Yang, Xiao-Ming Li","doi":"10.1002/srin.202400684","DOIUrl":null,"url":null,"abstract":"<p>Metallurgical quality of bearing steel is an important foundation and guarantees for determining the performance, accuracy, service life, and reliability of bearings. Nowadays, advances in refining technology have led to a significant increase in the cleanliness of bearing steel, and the control of large-size carbides (primary, banded, and network carbides) has become particularly important. In this article, the recent research on large-size carbides regarding morphology, precipitation mechanism, and control methods is reviewed. Firstly, the morphological characteristics of carbides are summarized. Primary carbides appear as blocky, lamellar, or irregular shapes, while banded carbides are distributed in bands. Network carbides mainly precipitate along the austenitic grain boundaries and aggregate to form networks. Secondly, the precipitation mechanisms of carbides are summarized. Dendritic segregation is the fundamental cause of the formation of primary and banded carbides, whereas network carbides are the supersaturation precipitation of carbon at austenite grain boundaries. Finally, methods for controlling large-size carbides are summarized, including improving dendritic segregation, high-temperature diffusion annealing, improving rolling and cooling processes and using magnesium or rare-earth treatments. No single method offers sufficient carbide control, and mechanism of rare-earth refining carbides is unknown. Thus, a comprehensive approach should be used in production to effectively regulate carbides in steel.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Metallurgical quality of bearing steel is an important foundation and guarantees for determining the performance, accuracy, service life, and reliability of bearings. Nowadays, advances in refining technology have led to a significant increase in the cleanliness of bearing steel, and the control of large-size carbides (primary, banded, and network carbides) has become particularly important. In this article, the recent research on large-size carbides regarding morphology, precipitation mechanism, and control methods is reviewed. Firstly, the morphological characteristics of carbides are summarized. Primary carbides appear as blocky, lamellar, or irregular shapes, while banded carbides are distributed in bands. Network carbides mainly precipitate along the austenitic grain boundaries and aggregate to form networks. Secondly, the precipitation mechanisms of carbides are summarized. Dendritic segregation is the fundamental cause of the formation of primary and banded carbides, whereas network carbides are the supersaturation precipitation of carbon at austenite grain boundaries. Finally, methods for controlling large-size carbides are summarized, including improving dendritic segregation, high-temperature diffusion annealing, improving rolling and cooling processes and using magnesium or rare-earth treatments. No single method offers sufficient carbide control, and mechanism of rare-earth refining carbides is unknown. Thus, a comprehensive approach should be used in production to effectively regulate carbides in steel.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming