{"title":"Microstructural Evolution and Mechanical Properties of Reeled X65 Pipeline Steel during Cyclic Plastic Deformation and Natural Aging","authors":"Qianlin Wu, Jialu Ge, Ping Hu, Zhonghua Zhang, Chunhua Fan, Ning Zhong","doi":"10.1002/srin.202400719","DOIUrl":null,"url":null,"abstract":"<p>The reel laying is recognized as a cost-effective installation process for offshore pipelines. However, the mechanical properties are modified due to plastic deformation during the reel laying and lowering process of reeled pipelines and the subsequent natural aging in service. Cyclic plastic deformation (CPD) is conducted on X65 pipeline steel to simulate the strain experienced in the reel-laying and lowering process, and then, the CPD specimen is aged at 250 °C to simulate natural aging in service. The dislocation configurations gradually evolve from dislocation lines and tangles into dislocation walls and cells due to the increase in strain level. After CPD and aging, the tensile strength increases by about 25 MPa, which is not significantly affected by the last introduced load direction and strain level. At the end of compressive loading, the yield strength and yield ratio decrease, but the uniform elongation increases significantly. In contrast, at the end of tensile loading, the yield strength and yield ratio increase, but the uniform elongation decreases slightly. The yield strength further increases as the strain level increases from 2 to 3%. Therefore, CPD and aging modify the mechanical properties of X65, considerably depending on the last introduced load direction and strain level.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400719","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The reel laying is recognized as a cost-effective installation process for offshore pipelines. However, the mechanical properties are modified due to plastic deformation during the reel laying and lowering process of reeled pipelines and the subsequent natural aging in service. Cyclic plastic deformation (CPD) is conducted on X65 pipeline steel to simulate the strain experienced in the reel-laying and lowering process, and then, the CPD specimen is aged at 250 °C to simulate natural aging in service. The dislocation configurations gradually evolve from dislocation lines and tangles into dislocation walls and cells due to the increase in strain level. After CPD and aging, the tensile strength increases by about 25 MPa, which is not significantly affected by the last introduced load direction and strain level. At the end of compressive loading, the yield strength and yield ratio decrease, but the uniform elongation increases significantly. In contrast, at the end of tensile loading, the yield strength and yield ratio increase, but the uniform elongation decreases slightly. The yield strength further increases as the strain level increases from 2 to 3%. Therefore, CPD and aging modify the mechanical properties of X65, considerably depending on the last introduced load direction and strain level.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming