Haijun Pan, Zheng Wang, Shunhu Zhang, Ze Sun, Zhiqiang Wu, Wenhao Zhou, Lin Liu
{"title":"Strain Rate Sensitivity of Low-Temperature Superplastic Heterogeneous Medium-Mn Steel Fabricated by a Novel High-Ratio Differential Speed Rolling","authors":"Haijun Pan, Zheng Wang, Shunhu Zhang, Ze Sun, Zhiqiang Wu, Wenhao Zhou, Lin Liu","doi":"10.1002/srin.202400511","DOIUrl":null,"url":null,"abstract":"<p>\nIn the present article, insights into the high-temperature deformation behavior of medium-Mn steel (MMS), which is prepared via high-ratio differential speed rolling (HRDSR), are provided. Moreover, through innovative bidirectional jump experiments, variations in the strain rate sensitivity index m under various conditions are obtained. In the research findings, it is indicated that an increase in strain rate (SR) leads to a hardening of the alloy. During high-temperature deformation, the value of m decreases with the increase in SR, but the rate of decrease gradually slows down. Furthermore, the higher the temperature (T), the greater the impact of changes in SR on m. In addition, the change in deformation mechanism during deformation leads to microstructural changes, and under the main deformation mechanism of grain-boundary sliding, m generally increases with strain. Interestingly, at a T of 760 °C, the material exhibits a strong texture with high orientation, resulting in larger m values and superior superplasticity (≈691%). This study not only enriches the research content of HRDSR but also has significant implications for the superplasticity research of MMS. Moreover, a reference is provided for the research of other superplastic materials.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400511","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the present article, insights into the high-temperature deformation behavior of medium-Mn steel (MMS), which is prepared via high-ratio differential speed rolling (HRDSR), are provided. Moreover, through innovative bidirectional jump experiments, variations in the strain rate sensitivity index m under various conditions are obtained. In the research findings, it is indicated that an increase in strain rate (SR) leads to a hardening of the alloy. During high-temperature deformation, the value of m decreases with the increase in SR, but the rate of decrease gradually slows down. Furthermore, the higher the temperature (T), the greater the impact of changes in SR on m. In addition, the change in deformation mechanism during deformation leads to microstructural changes, and under the main deformation mechanism of grain-boundary sliding, m generally increases with strain. Interestingly, at a T of 760 °C, the material exhibits a strong texture with high orientation, resulting in larger m values and superior superplasticity (≈691%). This study not only enriches the research content of HRDSR but also has significant implications for the superplasticity research of MMS. Moreover, a reference is provided for the research of other superplastic materials.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming