{"title":"Assessment of Equilibrium between Yttrium and Oxygen in Liquid Iron","authors":"Jian Kang, Hongpo Wang, Yu Wang, Ke Chen","doi":"10.1002/srin.202400645","DOIUrl":null,"url":null,"abstract":"<p>Rare earth elements (REEs) are crucial additives in the iron and steel industry. The accurate determination of thermodynamic data is fundamental for applying REEs in steel production; however, this has proven challenging due to their strong reactivity with refractory materials. This study assessed the thermodynamic data for the yttrium–oxygen equilibrium in liquid iron, using high-temperature experiments with high-purity Y<sub>2</sub>O<sub>3</sub> crucibles as the smelting container. More reliable equilibrium constants and first-order interaction coefficients are obtained by minimizing the reactions between yttrium and the crucible while ensuring favorable kinetic conditions. The results confirm that the deoxidation product of yttrium in liquid iron is Y<sub>2</sub>O<sub>3</sub>, and the equilibrium constant for the reaction Y<sub>2</sub>O<sub>3</sub>(s) = 2[Y] + 3[O] can be expressed as follows: <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <msub>\n <mi>K</mi>\n <mi>Y</mi>\n </msub>\n <mo>(</mo>\n <msubsup>\n <mi>K</mi>\n <mi>Y</mi>\n <mi>O</mi>\n </msubsup>\n <mo>=</mo>\n <msubsup>\n <mi>a</mi>\n <mi>Y</mi>\n <mn>2</mn>\n </msubsup>\n <msubsup>\n <mi>a</mi>\n <mi>O</mi>\n <mn>3</mn>\n </msubsup>\n <mo>/</mo>\n <msub>\n <mi>a</mi>\n <mrow>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mo>−</mo>\n <mn>63585</mn>\n <mo>/</mo>\n <mi>T</mi>\n <mo>+</mo>\n <mn>20.18</mn>\n <mo>,</mo>\n <mo> </mo>\n <mn>1600</mn>\n <mo>−</mo>\n <mn>1700</mn>\n <mo> </mo>\n <mo>°</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$$ \\mathrm{log}{K}_{\\text{Y}}({K}_{\\text{Y}}^{\\text{O}}={a}_{\\text{Y}}^{2}{a}_{\\text{O}}^{3}/{a}_{{\\text{Y}}_{2}{\\text{O}}_{3}})=-63585/T&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus;20.18,&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;nbsp;1600-1700&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;nbsp;&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;deg;\\mathrm{C}$$</annotation>\n </semantics></math>. <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <msub>\n <mo>′</mo>\n <mi>Y</mi>\n </msub>\n <mo>=</mo>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>%</mo>\n <mi>Y</mi>\n <mo>]</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>%</mo>\n <mi>O</mi>\n <mo>]</mo>\n </mrow>\n <mn>3</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$K &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;aposx;_{\\text{Y}} &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; \\left(\\right. \\left(\\left[\\right. \\% \\text{Y} \\left]\\right.\\right)^{2} \\left(\\left[\\right. \\% \\text{O} \\left]\\right.\\right)^{3} \\left.\\right)$</annotation>\n </semantics></math> can be expressed as: <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>K</mi>\n <msub>\n <mo>′</mo>\n <mi>Y</mi>\n </msub>\n <mo>=</mo>\n <mi>log</mi>\n <msub>\n <mi>K</mi>\n <mi>Y</mi>\n </msub>\n <mo>−</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>31028</mn>\n <mo>/</mo>\n <mi>T</mi>\n <mo>+</mo>\n <mn>8.06</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mn>3</mn>\n <mo>[</mo>\n <mo>%</mo>\n <mi>Y</mi>\n <mo>]</mo>\n <mo>+</mo>\n <mn>11.1</mn>\n <mo>[</mo>\n <mo>%</mo>\n <mi>O</mi>\n <mo>]</mo>\n <mo>)</mo>\n <mo>,</mo>\n <mo> </mo>\n <mn>0.003</mn>\n <mo> </mo>\n <mtext>wt%</mtext>\n <mo><</mo>\n <mo>[</mo>\n <mi>Y</mi>\n <mo>]</mo>\n <mo><</mo>\n <mn>0.23</mn>\n <mo> </mo>\n <mtext>wt%</mtext>\n </mrow>\n <annotation>$$ \\mathrm{log}K{\\prime }_{\\text{Y}}=\\mathrm{log}{K}_{\\text{Y}}-(-31028/T&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus;8.06)(3[\\%\\text{Y}]&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus;11.1[\\%\\text{O}]),&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;nbsp;0.003&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;nbsp;\\text{wt\\%}&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;lt;[\\text{Y}]&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.23&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;nbsp;\\text{wt\\%}$$</annotation>\n </semantics></math>. The first-order interaction coefficient can be presented as: <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>e</mi>\n <mi>O</mi>\n <mi>Y</mi>\n </msubsup>\n <mo>=</mo>\n <mo>−</mo>\n <mn>31028</mn>\n <mo>/</mo>\n <mi>T</mi>\n <mo>+</mo>\n <mn>8.06</mn>\n </mrow>\n <annotation>$e_{\\text{O}}^{\\text{Y}} &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; - 31028 / T &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; 8.06$</annotation>\n </semantics></math>.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400645","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth elements (REEs) are crucial additives in the iron and steel industry. The accurate determination of thermodynamic data is fundamental for applying REEs in steel production; however, this has proven challenging due to their strong reactivity with refractory materials. This study assessed the thermodynamic data for the yttrium–oxygen equilibrium in liquid iron, using high-temperature experiments with high-purity Y2O3 crucibles as the smelting container. More reliable equilibrium constants and first-order interaction coefficients are obtained by minimizing the reactions between yttrium and the crucible while ensuring favorable kinetic conditions. The results confirm that the deoxidation product of yttrium in liquid iron is Y2O3, and the equilibrium constant for the reaction Y2O3(s) = 2[Y] + 3[O] can be expressed as follows: . can be expressed as: . The first-order interaction coefficient can be presented as: .
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming