{"title":"Analysis of Rolling Force and Friction in Hot Steel Rolling with Water‐Based Nanolubrication","authors":"Hui Wu, Shengnan Yuan, Fei Lin, Mengyuan Ren, Jingru Yan, Muyuan Zhou, Zhao Xing, Sihai Jiao, Zhengyi Jiang","doi":"10.1002/srin.202400229","DOIUrl":"https://doi.org/10.1002/srin.202400229","url":null,"abstract":"Water‐based nanolubricants are playing increasingly important roles in hot steel rolling over the past decade regarding environmental protection, energy saving, and product quality improvement. The contact friction between the work roll and the workpiece under water‐based nanolubrication, however, has been scarcely investigated. In this study, water‐based lubricants containing 0–4.0 wt% TiO<jats:sub>2</jats:sub> nanoparticles are employed in hot rolling of a mild steel under different rolling conditions. The Taguchi method is used for the orthogonal design of the hot‐rolling tests to sequence the key factors that affect the rolling force in terms of importance. The as‐synthesized water‐based nanolubricants indicate excellent dispersion stability after standing for 24 h, which can be readily restored to the original state via manual shaking. The coefficient of friction (COF) during the steady‐state hot steel rolling is inversely calculated using a flow stress model developed from hot compression testing. A novel COF model for hot rolling of the steel is thus proposed through multiple linear regression. It is found that the result of linear regression agreed well with that of inverse calculation, indicating that the proposed COF model is applicable. Finally, the lubrication mechanism is examined through a boundary lubrication regime determined from a modified lubricant film thickness model.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengzhao Zhang, Ze Meng, Guangqiang Li, Chang Liu, Xijie Wang, Yu Liu
{"title":"Industrial Trials on the Cleanliness Improvement, Microstructure Refinement and Performance Enhancement of Rare‐Earth‐Treated 75Cr1 Steel","authors":"Pengzhao Zhang, Ze Meng, Guangqiang Li, Chang Liu, Xijie Wang, Yu Liu","doi":"10.1002/srin.202400576","DOIUrl":"https://doi.org/10.1002/srin.202400576","url":null,"abstract":"The effects of rare‐earth treatment on cleanliness, corrosion resistance, microstructure, and mechanical properties of 75Cr1 steel are investigated by industrial trial. In the results, it is shown that the appropriate La–Ce addition can effectively remove oxygen and sulfur elements in steel, and total oxygen (T.O) and S contents decrease by 45% and 33%, respectively. After La–Ce treatment, the typical inclusions in steel are transformed from (Mg–Al–O)–CaS composite inclusions to RE<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>–CaS inclusion with a small amount of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The number and average size of inclusions in steel are significantly reduced, and the morphology of inclusions changes from irregular shape to spherical shape, which contributes to the improvement of the corrosion resistance of 75Cr1 steel. Furthermore, the pearlite spacing and the grain size are refined, the tensile and yield strengths are significantly enhanced in the test of La–Ce‐treated steel. The 75Cr1 steels are fabricated in small batches, which avoids the nozzle clogging resulted by rare‐earth treatment during continuous casting. It implies that rare‐earth treatment to improve the quality of 75Cr1 steel shows the strong industrial applicability.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"21 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova
{"title":"Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Interface Slag from the Production of Construction Steel","authors":"Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova","doi":"10.1002/srin.202400476","DOIUrl":"https://doi.org/10.1002/srin.202400476","url":null,"abstract":"Viscosity, density, and surface tension of an industrial electric arc furnace (EAF) slag from production of construction steel with varying SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> contents are investigated using a rotating viscometer and the maximum bubble pressure method. In addition, influence of thermophysical properties on foaming index is discussed. To predict the behavior of the solid phase in the slag at different temperatures, thermodynamic calculations are performed using FactSage 8.1 software. The experiments demonstratethat SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> act as network formers in the studied slag systems, resulting in increased viscosity values in the liquid‐dominant region and decreased density of the slag. The presence of alumina and silica altered the behavior of the slag in the liquid‐dominant region, shifting the breaking point of the slags. Furthermore, the addition of silica decreases the surface tension of the slag, confirming its role as a surfactant. However, the addition of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> increases the surface tension due to the high surface tension of pure alumina. Consequently, the foaming index of the slag can increase by ≈40%, primarily due to the polymerization of the slag.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"4 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods","authors":"Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova","doi":"10.1002/srin.202400252","DOIUrl":"https://doi.org/10.1002/srin.202400252","url":null,"abstract":"In this study, the thermophysical properties of low‐sulfur manganese–boron steel with varying boron and sulfur contents at different temperatures are investigated. Density and surface tension are measured between 1550 and 1650 °C using the maximum bubble pressure method, while viscosity is examined between 1530 and 1570 °C using an improved oscillating crucible viscometer. The methods yield results with low error, consistent with existing literature. The density of the base steel decreases from 7057 ± 25 kg m<jats:sup>−3</jats:sup> at 1550 °C to 6843 ± 85 kg m<jats:sup>−3</jats:sup> at 1650 °C. The addition of boron (up to 57 ppm) and sulfur (up to 130 ppm) does not significantly change the density. Sulfur, increasing from 39 to 130 ppm, reduces the surface tension from 1416 ± 12 to 1302 ± 9 mN m<jats:sup>−1</jats:sup> at 1650 °C. Boron's effect on surface tension varies, possibly influenced by other elements like oxygen. Viscosity ranges from 5.74 to 6.44 mPa s, with boron and sulfur additions causing minimal changes, the largest deviation being 8%. In these results, valuable data for the simulation, modeling, control, and optimization of liquid steel processing are provided.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"38 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park
{"title":"Evolution Mechanism of Nonmetallic Inclusions in Fe‐1.5Al‐xSi (x = 0.5–3.0 wt%) Alloyed Steels","authors":"Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park","doi":"10.1002/srin.202400491","DOIUrl":"https://doi.org/10.1002/srin.202400491","url":null,"abstract":"The effects of Si content of steel melts containing 1.5% Al as well as alloying sequence of Si and Al on the evolution of inclusions are investigated. The SiO<jats:sub>2</jats:sub> inclusion is primarily formed when Si (=0.5–3.0 wt%) is added to the melts at 1873 K, and the area fraction (AF) of the inclusions decreases over time. The subsequent addition of 1.5% Al to the Si‐alloyed steel (i.e., 3.0Si→1.5Al) increases the AF of inclusions due to the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The population density function (PDF) analysis for the preferential Si alloying shows a fractal distribution, indicating that the inclusions grow by a collision mechanism. PDF analysis shows a lognormal distribution because Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> inclusion is formed and grows after subsequent Al alloying. Alternatively, when 1.5% Al is preferentially added to steel, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> clusters are formed. The AF of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster decreases over time. When 3.0% Si is subsequently added to the Al‐alloyed steel (i.e., 1.5Al→3.0Si), singular Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles are mainly observed. Because the Al alloying results in the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> regardless of the alloying sequence and Si content, it is important to float up and separate Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster to improve the cleanliness of high‐Si‐Al‐alloyed steels such as electrical steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"5 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike
{"title":"Investigation on Applicability of Lime as Desulfurization Agent for Molten Cast Iron","authors":"Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike","doi":"10.1002/srin.202400416","DOIUrl":"https://doi.org/10.1002/srin.202400416","url":null,"abstract":"In this study, the prospective application of lime as a desulfurization agent for the cast‐iron industry is technically examined. This investigation encompasses a series of laboratory experiments conducted under atmospheric conditions, mirroring industrial settings by exploring two distinct methods for introducing lime powder onto and into molten cast iron using surface addition and gas injection techniques. Deoxidation agents (FeSi, SiC, and Al) are also incorporated to enhance the lime‐based desulfurization results. Based on the findings of this study, it is indicated that lime can be a reliable cast‐iron desulfurization agent by reaching an end‐sulfur concentration of <0.015 wt%, thus providing an opportunity for a sustainable alternative for the foundry industry. In this study, it is also revealed that adding a small quantity of Al is more effective at enhancing desulfurization results than Si due to its role in increasing the proportion of liquid slag during desulfurization. However, caution is advised regarding the limit of aluminum concentration in cast iron (0.1 wt%), and treatment temperatures should be kept above 1400 °C to prevent counterproductive effects and undesirable defects in the product.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"8 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi
{"title":"The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy","authors":"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi","doi":"10.1002/srin.202400310","DOIUrl":"https://doi.org/10.1002/srin.202400310","url":null,"abstract":"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"28 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang
{"title":"On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel","authors":"Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang","doi":"10.1002/srin.202400494","DOIUrl":"https://doi.org/10.1002/srin.202400494","url":null,"abstract":"In the course of the decarbonization of steel production, electric steel production will continue to gain importance. The processing of low‐quality scrap will also play an important role, which may lead to an increase in the content of so‐called tramp elements in steel production and further processing. This article examines the effect of the elements Cu, Sn, and Ni on the formation of surface cracks under the conditions of the continuous casting process. Results of an in situ bending test are compared with the results of the experimental simulation of high‐temperature oxidation and thermodynamic analysis based on the CALculation of PHase Diagrams (CALPHAD) approach. For a temperature of 900 °C, an equivalent Cu content of 0.20 wt% must be considered as the critical upper limit. The presumable reason is the existence of Cu‐ and Sn‐rich liquid phases at the austenite grain boundaries. The results clearly show the effect of the investigated elements but also point to the importance of the gas atmosphere and cooling conditions on the results. This can be a groundbreaking result for extending the process window for casting steels with increased tramp element contents.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"6 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei
{"title":"Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel","authors":"Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei","doi":"10.1002/srin.202400570","DOIUrl":"https://doi.org/10.1002/srin.202400570","url":null,"abstract":"By means of microstructure observation, phase analysis, and mechanical‐property tests, the effect of martensite–bainite (M–B) duplex microstructure on carbide precipitation and mechanical properties of M50 steel is studied. In that results, it is shown that the distribution of secondary carbides in specimens with M–B duplex microstructure is more uniform and finer, and the stability of retained austenite (RA) in the steel is also improved, so that the content of RA in specimens with M–B duplex microstructure is 2.34%, which is higher than the 0.94% of the specimens with full martensite microstructure. The M–B duplex microstructure leads to the reduction of tempering hardness of M50 steel to 60.9 unit of Rockwell hardness (HRC), compared to the 61.6 HRC of the specimens with full martensite microstructure, but the wear resistance is slightly enhanced. Moreover, the M–B duplex microstructure effectively improves the impact toughness and fatigue properties by refining the microstructure and carbides in the steel, and the increase amplitude is 47.4% and 41.0%, respectively.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"70 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size","authors":"Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu","doi":"10.1002/srin.202400094","DOIUrl":"https://doi.org/10.1002/srin.202400094","url":null,"abstract":"For sintering pot productive process with various fuel particle size distributions, a transient numerical simulation sintering model based on the computational fluid dynamics approach is developed using Fluent 2021R1. The model combines chemical reaction, mass and heat transfer, Euler–Euler model, and fluid flow in porous media. In this study, CO is employed as the combustion's intermediate product, which is further oxidized by secondary combustion in the high‐temperature zone. Through calculations, the solid fuel combustion behavior of the sintering is explained collectively with the changing bed temperature, CO emission, and solid fuel combustion efficiency of the process under various fuel particle size distribution. In the sintering process, the fuel particle size distribution is crucial for lowering CO emissions and increasing combustion efficiency. The combustion efficiency shows a tendency of increasing initially before decreasing with the reduction of solid fuel particle size, while CO emissions show a trend of reducing first and then increasing. It is advantageous to lower the CO emission in the sintering process, and the combustion efficiency of the sintering process is greatly boosted by 5.13% when the proportion of solid fuel with 5 mm particle size decreases and the proportion of solid fuel with 3 mm particle size increases.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"26 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}