steel research international最新文献

筛选
英文 中文
Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Interface Slag from the Production of Construction Steel SiO2 和 Al2O3 对建筑钢材生产过程中产生的电弧界面渣的热物理性质和发泡指数的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400476
Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova
{"title":"Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Interface Slag from the Production of Construction Steel","authors":"Mykyta Levchenko, Oleksandr Kovtun, Alberto Angelini, Hans Peter Markus, Dariusz Sosin, Rie Endo, Olena Volkova","doi":"10.1002/srin.202400476","DOIUrl":"https://doi.org/10.1002/srin.202400476","url":null,"abstract":"Viscosity, density, and surface tension of an industrial electric arc furnace (EAF) slag from production of construction steel with varying SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> contents are investigated using a rotating viscometer and the maximum bubble pressure method. In addition, influence of thermophysical properties on foaming index is discussed. To predict the behavior of the solid phase in the slag at different temperatures, thermodynamic calculations are performed using FactSage 8.1 software. The experiments demonstratethat SiO<jats:sub>2</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> act as network formers in the studied slag systems, resulting in increased viscosity values in the liquid‐dominant region and decreased density of the slag. The presence of alumina and silica altered the behavior of the slag in the liquid‐dominant region, shifting the breaking point of the slags. Furthermore, the addition of silica decreases the surface tension of the slag, confirming its role as a surfactant. However, the addition of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> increases the surface tension due to the high surface tension of pure alumina. Consequently, the foaming index of the slag can increase by ≈40%, primarily due to the polymerization of the slag.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods 通过最大气泡压力法和摆动坩埚法测定液态低硫锰硼钢的密度、表面张力和粘度
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400252
Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova
{"title":"Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods","authors":"Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova","doi":"10.1002/srin.202400252","DOIUrl":"https://doi.org/10.1002/srin.202400252","url":null,"abstract":"In this study, the thermophysical properties of low‐sulfur manganese–boron steel with varying boron and sulfur contents at different temperatures are investigated. Density and surface tension are measured between 1550 and 1650 °C using the maximum bubble pressure method, while viscosity is examined between 1530 and 1570 °C using an improved oscillating crucible viscometer. The methods yield results with low error, consistent with existing literature. The density of the base steel decreases from 7057 ± 25 kg m<jats:sup>−3</jats:sup> at 1550 °C to 6843 ± 85 kg m<jats:sup>−3</jats:sup> at 1650 °C. The addition of boron (up to 57 ppm) and sulfur (up to 130 ppm) does not significantly change the density. Sulfur, increasing from 39 to 130 ppm, reduces the surface tension from 1416 ± 12 to 1302 ± 9 mN m<jats:sup>−1</jats:sup> at 1650 °C. Boron's effect on surface tension varies, possibly influenced by other elements like oxygen. Viscosity ranges from 5.74 to 6.44 mPa s, with boron and sulfur additions causing minimal changes, the largest deviation being 8%. In these results, valuable data for the simulation, modeling, control, and optimization of liquid steel processing are provided.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution Mechanism of Nonmetallic Inclusions in Fe‐1.5Al‐xSi (x = 0.5–3.0 wt%) Alloyed Steels Fe-1.5Al-xSi (x = 0.5-3.0 wt%) 合金钢中非金属夹杂物的演变机制
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400491
Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park
{"title":"Evolution Mechanism of Nonmetallic Inclusions in Fe‐1.5Al‐xSi (x = 0.5–3.0 wt%) Alloyed Steels","authors":"Tae Sung Kim, Geun Ho Park, Dong Woon Kim, Joo Hyun Park","doi":"10.1002/srin.202400491","DOIUrl":"https://doi.org/10.1002/srin.202400491","url":null,"abstract":"The effects of Si content of steel melts containing 1.5% Al as well as alloying sequence of Si and Al on the evolution of inclusions are investigated. The SiO<jats:sub>2</jats:sub> inclusion is primarily formed when Si (=0.5–3.0 wt%) is added to the melts at 1873 K, and the area fraction (AF) of the inclusions decreases over time. The subsequent addition of 1.5% Al to the Si‐alloyed steel (i.e., 3.0Si→1.5Al) increases the AF of inclusions due to the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The population density function (PDF) analysis for the preferential Si alloying shows a fractal distribution, indicating that the inclusions grow by a collision mechanism. PDF analysis shows a lognormal distribution because Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> inclusion is formed and grows after subsequent Al alloying. Alternatively, when 1.5% Al is preferentially added to steel, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> clusters are formed. The AF of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster decreases over time. When 3.0% Si is subsequently added to the Al‐alloyed steel (i.e., 1.5Al→3.0Si), singular Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles are mainly observed. Because the Al alloying results in the formation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> regardless of the alloying sequence and Si content, it is important to float up and separate Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cluster to improve the cleanliness of high‐Si‐Al‐alloyed steels such as electrical steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on Applicability of Lime as Desulfurization Agent for Molten Cast Iron 石灰作为熔融铸铁脱硫剂的适用性研究
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400416
Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike
{"title":"Investigation on Applicability of Lime as Desulfurization Agent for Molten Cast Iron","authors":"Ida B. G. S. Adhiwiguna, Gökhan Karagülmez, Onur Keskin, Rüdiger Deike","doi":"10.1002/srin.202400416","DOIUrl":"https://doi.org/10.1002/srin.202400416","url":null,"abstract":"In this study, the prospective application of lime as a desulfurization agent for the cast‐iron industry is technically examined. This investigation encompasses a series of laboratory experiments conducted under atmospheric conditions, mirroring industrial settings by exploring two distinct methods for introducing lime powder onto and into molten cast iron using surface addition and gas injection techniques. Deoxidation agents (FeSi, SiC, and Al) are also incorporated to enhance the lime‐based desulfurization results. Based on the findings of this study, it is indicated that lime can be a reliable cast‐iron desulfurization agent by reaching an end‐sulfur concentration of &lt;0.015 wt%, thus providing an opportunity for a sustainable alternative for the foundry industry. In this study, it is also revealed that adding a small quantity of Al is more effective at enhancing desulfurization results than Si due to its role in increasing the proportion of liquid slag during desulfurization. However, caution is advised regarding the limit of aluminum concentration in cast iron (0.1 wt%), and treatment temperatures should be kept above 1400 °C to prevent counterproductive effects and undesirable defects in the product.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy 在农业中使用二次冶金炉渣作为土壤改良剂:意大利对其应用的认可
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400310
Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi
{"title":"The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy","authors":"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi","doi":"10.1002/srin.202400310","DOIUrl":"https://doi.org/10.1002/srin.202400310","url":null,"abstract":"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel 论连铸钢件表面缺陷形成过程中杂质的作用
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400494
Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang
{"title":"On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel","authors":"Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang","doi":"10.1002/srin.202400494","DOIUrl":"https://doi.org/10.1002/srin.202400494","url":null,"abstract":"In the course of the decarbonization of steel production, electric steel production will continue to gain importance. The processing of low‐quality scrap will also play an important role, which may lead to an increase in the content of so‐called tramp elements in steel production and further processing. This article examines the effect of the elements Cu, Sn, and Ni on the formation of surface cracks under the conditions of the continuous casting process. Results of an in situ bending test are compared with the results of the experimental simulation of high‐temperature oxidation and thermodynamic analysis based on the CALculation of PHase Diagrams (CALPHAD) approach. For a temperature of 900 °C, an equivalent Cu content of 0.20 wt% must be considered as the critical upper limit. The presumable reason is the existence of Cu‐ and Sn‐rich liquid phases at the austenite grain boundaries. The results clearly show the effect of the investigated elements but also point to the importance of the gas atmosphere and cooling conditions on the results. This can be a groundbreaking result for extending the process window for casting steels with increased tramp element contents.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel 马氏体-贝氏体双相显微结构对 M50 钢碳化物析出和机械性能的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-10 DOI: 10.1002/srin.202400570
Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei
{"title":"Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel","authors":"Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei","doi":"10.1002/srin.202400570","DOIUrl":"https://doi.org/10.1002/srin.202400570","url":null,"abstract":"By means of microstructure observation, phase analysis, and mechanical‐property tests, the effect of martensite–bainite (M–B) duplex microstructure on carbide precipitation and mechanical properties of M50 steel is studied. In that results, it is shown that the distribution of secondary carbides in specimens with M–B duplex microstructure is more uniform and finer, and the stability of retained austenite (RA) in the steel is also improved, so that the content of RA in specimens with M–B duplex microstructure is 2.34%, which is higher than the 0.94% of the specimens with full martensite microstructure. The M–B duplex microstructure leads to the reduction of tempering hardness of M50 steel to 60.9 unit of Rockwell hardness (HRC), compared to the 61.6 HRC of the specimens with full martensite microstructure, but the wear resistance is slightly enhanced. Moreover, the M–B duplex microstructure effectively improves the impact toughness and fatigue properties by refining the microstructure and carbides in the steel, and the increase amplitude is 47.4% and 41.0%, respectively.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size 烧结过程中 CO 生成和燃烧效率的数值模拟:固体燃料粒度的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-10 DOI: 10.1002/srin.202400094
Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu
{"title":"Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size","authors":"Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu","doi":"10.1002/srin.202400094","DOIUrl":"https://doi.org/10.1002/srin.202400094","url":null,"abstract":"For sintering pot productive process with various fuel particle size distributions, a transient numerical simulation sintering model based on the computational fluid dynamics approach is developed using Fluent 2021R1. The model combines chemical reaction, mass and heat transfer, Euler–Euler model, and fluid flow in porous media. In this study, CO is employed as the combustion's intermediate product, which is further oxidized by secondary combustion in the high‐temperature zone. Through calculations, the solid fuel combustion behavior of the sintering is explained collectively with the changing bed temperature, CO emission, and solid fuel combustion efficiency of the process under various fuel particle size distribution. In the sintering process, the fuel particle size distribution is crucial for lowering CO emissions and increasing combustion efficiency. The combustion efficiency shows a tendency of increasing initially before decreasing with the reduction of solid fuel particle size, while CO emissions show a trend of reducing first and then increasing. It is advantageous to lower the CO emission in the sintering process, and the combustion efficiency of the sintering process is greatly boosted by 5.13% when the proportion of solid fuel with 5 mm particle size decreases and the proportion of solid fuel with 3 mm particle size increases.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review 钢包渣中玛雅橄榄石的水合活性增强方法:综述
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400355
Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He
{"title":"The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review","authors":"Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He","doi":"10.1002/srin.202400355","DOIUrl":"https://doi.org/10.1002/srin.202400355","url":null,"abstract":"As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca<jats:sub>12</jats:sub>Al<jats:sub>14</jats:sub>O<jats:sub>33</jats:sub>, abbreviated as C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>, amorphous, C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> exhibits excellent hydration activity. Building upon this, methods for amorphizing C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Microstructure Evolution in Ball Mill Liner Forging Process 球磨机衬板锻造过程中的显微结构演变预测
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400479
Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu
{"title":"Prediction of Microstructure Evolution in Ball Mill Liner Forging Process","authors":"Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu","doi":"10.1002/srin.202400479","DOIUrl":"https://doi.org/10.1002/srin.202400479","url":null,"abstract":"The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo‐force‐structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s<jats:sup>−1</jats:sup>, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信