steel research international最新文献

筛选
英文 中文
The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy 在农业中使用二次冶金炉渣作为土壤改良剂:意大利对其应用的认可
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400310
Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi
{"title":"The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy","authors":"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi","doi":"10.1002/srin.202400310","DOIUrl":"https://doi.org/10.1002/srin.202400310","url":null,"abstract":"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel 论连铸钢件表面缺陷形成过程中杂质的作用
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-12 DOI: 10.1002/srin.202400494
Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang
{"title":"On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel","authors":"Christian Bernhard, Georg Gaiser, Michael Bernhard, Johann Winkler, Maximilian Kern, Peter Presoly, Youn‐Bae Kang","doi":"10.1002/srin.202400494","DOIUrl":"https://doi.org/10.1002/srin.202400494","url":null,"abstract":"In the course of the decarbonization of steel production, electric steel production will continue to gain importance. The processing of low‐quality scrap will also play an important role, which may lead to an increase in the content of so‐called tramp elements in steel production and further processing. This article examines the effect of the elements Cu, Sn, and Ni on the formation of surface cracks under the conditions of the continuous casting process. Results of an in situ bending test are compared with the results of the experimental simulation of high‐temperature oxidation and thermodynamic analysis based on the CALculation of PHase Diagrams (CALPHAD) approach. For a temperature of 900 °C, an equivalent Cu content of 0.20 wt% must be considered as the critical upper limit. The presumable reason is the existence of Cu‐ and Sn‐rich liquid phases at the austenite grain boundaries. The results clearly show the effect of the investigated elements but also point to the importance of the gas atmosphere and cooling conditions on the results. This can be a groundbreaking result for extending the process window for casting steels with increased tramp element contents.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel 马氏体-贝氏体双相显微结构对 M50 钢碳化物析出和机械性能的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-10 DOI: 10.1002/srin.202400570
Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei
{"title":"Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel","authors":"Dongyue Zheng, Wenzeng Zhao, Xingfu Yu, Yong Su, Yinghua Wei","doi":"10.1002/srin.202400570","DOIUrl":"https://doi.org/10.1002/srin.202400570","url":null,"abstract":"By means of microstructure observation, phase analysis, and mechanical‐property tests, the effect of martensite–bainite (M–B) duplex microstructure on carbide precipitation and mechanical properties of M50 steel is studied. In that results, it is shown that the distribution of secondary carbides in specimens with M–B duplex microstructure is more uniform and finer, and the stability of retained austenite (RA) in the steel is also improved, so that the content of RA in specimens with M–B duplex microstructure is 2.34%, which is higher than the 0.94% of the specimens with full martensite microstructure. The M–B duplex microstructure leads to the reduction of tempering hardness of M50 steel to 60.9 unit of Rockwell hardness (HRC), compared to the 61.6 HRC of the specimens with full martensite microstructure, but the wear resistance is slightly enhanced. Moreover, the M–B duplex microstructure effectively improves the impact toughness and fatigue properties by refining the microstructure and carbides in the steel, and the increase amplitude is 47.4% and 41.0%, respectively.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size 烧结过程中 CO 生成和燃烧效率的数值模拟:固体燃料粒度的影响
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-10 DOI: 10.1002/srin.202400094
Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu
{"title":"Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size","authors":"Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu","doi":"10.1002/srin.202400094","DOIUrl":"https://doi.org/10.1002/srin.202400094","url":null,"abstract":"For sintering pot productive process with various fuel particle size distributions, a transient numerical simulation sintering model based on the computational fluid dynamics approach is developed using Fluent 2021R1. The model combines chemical reaction, mass and heat transfer, Euler–Euler model, and fluid flow in porous media. In this study, CO is employed as the combustion's intermediate product, which is further oxidized by secondary combustion in the high‐temperature zone. Through calculations, the solid fuel combustion behavior of the sintering is explained collectively with the changing bed temperature, CO emission, and solid fuel combustion efficiency of the process under various fuel particle size distribution. In the sintering process, the fuel particle size distribution is crucial for lowering CO emissions and increasing combustion efficiency. The combustion efficiency shows a tendency of increasing initially before decreasing with the reduction of solid fuel particle size, while CO emissions show a trend of reducing first and then increasing. It is advantageous to lower the CO emission in the sintering process, and the combustion efficiency of the sintering process is greatly boosted by 5.13% when the proportion of solid fuel with 5 mm particle size decreases and the proportion of solid fuel with 3 mm particle size increases.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review 钢包渣中玛雅橄榄石的水合活性增强方法:综述
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400355
Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He
{"title":"The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review","authors":"Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He","doi":"10.1002/srin.202400355","DOIUrl":"https://doi.org/10.1002/srin.202400355","url":null,"abstract":"As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca<jats:sub>12</jats:sub>Al<jats:sub>14</jats:sub>O<jats:sub>33</jats:sub>, abbreviated as C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>, amorphous, C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> exhibits excellent hydration activity. Building upon this, methods for amorphizing C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Microstructure Evolution in Ball Mill Liner Forging Process 球磨机衬板锻造过程中的显微结构演变预测
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400479
Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu
{"title":"Prediction of Microstructure Evolution in Ball Mill Liner Forging Process","authors":"Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu","doi":"10.1002/srin.202400479","DOIUrl":"https://doi.org/10.1002/srin.202400479","url":null,"abstract":"The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo‐force‐structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s<jats:sup>−1</jats:sup>, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of High‐ and Low‐Reactivity Cokes in Hydrogen‐Rich Blast Furnaces 高活性和低活性焦炭在富氢高炉中的应用
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400445
Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu
{"title":"Application of High‐ and Low‐Reactivity Cokes in Hydrogen‐Rich Blast Furnaces","authors":"Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu","doi":"10.1002/srin.202400445","DOIUrl":"https://doi.org/10.1002/srin.202400445","url":null,"abstract":"The effects of two cokes with different reactivity on the lump ore's metallurgical properties and coke's solution loss are investigated under the high‐temperature load reduction. The work used an improved test device for softening‐melting and dropping characteristics of iron ores in both CO<jats:sub>2</jats:sub> and CO<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub>O atmospheres. The deterioration behavior of highly reactive cokes is expounded under hydrogen‐rich conditions. High‐reactivity cokes under hydrogen‐rich conditions are more favorable for enhancing the breathability of charge and the penetration of the coke layer. However, it increased the thickness of the softening zone. High‐reactivity cokes had obvious internal and external reaction gradients. The solution loss reaction mostly occurred on the surface, with selectivity. The longitudinal stacking height, layer number, and order degree in the carbon structure decreases after the reaction. The carbon‐structure difference weakens between the shell and core. The enhancement of coke's reactivity, however, results in the significant loss of coke powders on its surface. Unreduced FeO and refractory Fe<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub> are more likely to appear in the droplets, which is not conducive to the reduction of Fe and the generation of slag crust in the furnace. The difficulty in separating lump ores and cokes is aggravated, and more iron‐containing charge remain in the furnace.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Observation of Microstructure and Precipitate Phase Transformation during the Solidification of Mg‐Containing GH3625 Alloy at Different Cooling Rates 不同冷却速率下含镁 GH3625 合金凝固过程中显微组织和沉淀相变的现场观察
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400301
Yu Zhang, Wei Gong, Pengfei Wang, Xingtong Li
{"title":"In Situ Observation of Microstructure and Precipitate Phase Transformation during the Solidification of Mg‐Containing GH3625 Alloy at Different Cooling Rates","authors":"Yu Zhang, Wei Gong, Pengfei Wang, Xingtong Li","doi":"10.1002/srin.202400301","DOIUrl":"https://doi.org/10.1002/srin.202400301","url":null,"abstract":"In practical applications, intermetallic compounds like Laves phase and metal carbides adversely affect the performance of nickel‐based superalloys. Using a high‐temperature confocal laser scanning microscope, the solidification process of as‐cast GH3625 alloy containing Mg at different cooling rates (−20, −35, and −50 °C min<jats:sup>−1</jats:sup>) is studied. Fitting curves of the volume fraction of the solid phase with solidification temperature before and after Mg treatment are obtained. Trends of solid phase transformation rates with solidification temperature are determined. Differential scanning calorimetry is employed to analyze and statistically evaluate the melting temperature range and enthalpy of each phase during the melting process. Experimental results demonstrate that Mg treatment significantly accelerates the alloy solidification at the cooling rates of −20 and −35 °C min<jats:sup>−1</jats:sup>, while reducing the area of residual liquid phase at the same solidification temperature, disrupting the Laves/NbC eutectic relationship, and regularizing NbC morphology, transitioning its distribution from aggregation to dispersion. After Mg treatment, the precipitation of the Laves phase is significantly reduced. As a result, the influence mechanism of Mg treatment on the phase transformation and microstructure of GH3625 is clarified based on homogeneous nucleation theory.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of CrMnNi Steel Powders Obtained via Gas Atomization 通过气体雾化技术获得的铬锰镍钢粉的表征
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400267
Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova
{"title":"Characterization of CrMnNi Steel Powders Obtained via Gas Atomization","authors":"Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova","doi":"10.1002/srin.202400267","DOIUrl":"https://doi.org/10.1002/srin.202400267","url":null,"abstract":"To obtain a successful product during additive manufacturing, the powder as a raw material must have the high quality. The purpose of this work is to investigate CrMnNi steel powders obtained by inert gas atomization with nickel content: 3, 6, and 9 wt% and to identify dependencies between the powder size and morphology, solidification structure, and change in chemical composition and thermophysical properties. Particle size distribution is measured by a laser scattering analyzer: d<jats:sub>50</jats:sub> value are 82.02, 69.32, and 75.54 μm for powders with 3, 6, and 9 wt%, respectively. Surface tension (ST) measurements are made by maximum bubble pressure method: for steels with 3, 6, and 9 wt% at temperature 1500 °C, ST is 1.01, 1.07, and 1.15 mN m<jats:sup>−1</jats:sup>, respectively. It is found that the change in particle size affects the chemical composition, the content of the ferromagnetic phase and secondary dendritic arm‐spacing. Changes in the content of elements such as S, O, N, and Mn are determined, depending on the diameter of the particles. The influence of changes in content of S, O, and N on the thermophysical properties such as ST is investigated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steel–Steel Laminates Manufactured via Accumulative Roll Bonding 通过累积轧制粘合制造的钢-钢层压板
IF 2.2 3区 材料科学
steel research international Pub Date : 2024-09-09 DOI: 10.1002/srin.202400472
Mikhail Seleznev, Jennifer Mantel, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, Anja Weidner
{"title":"Steel–Steel Laminates Manufactured via Accumulative Roll Bonding","authors":"Mikhail Seleznev, Jennifer Mantel, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, Anja Weidner","doi":"10.1002/srin.202400472","DOIUrl":"https://doi.org/10.1002/srin.202400472","url":null,"abstract":"Accumulative roll bonding (ARB) is a repeated cladding process in which two or more sheets of material are joined together by rolling at temperatures below recrystallization. The present review is focused on ARB of high‐alloy steels, which, among other laminated metal composites (LMCs), deliver the highest mechanical properties. After a brief description of high‐strength steels, history, and state of the art of LMCs, the principal roll bonding mechanism is explained. Further, the methodology of ARB of steels and variable parameters (stacking, temperature, etc.) are discussed. Known examples of steel–steel laminates are summarized with respect to their rolling temperature and mechanical properties. Further, the main toughening mechanisms of steel‐based LMCs are listed. The most promising candidates of high‐alloy steel laminates are presented in more detail. The important deformation mechanisms of twinning‐ and transformation‐induced plasticity (TWIP and TRIP) high‐alloy steels are explained. Microstructural changes and layer bonding as well as mechanical properties and damage behavior of two‐ and four‐layered TRIP/TWIP steel laminates are illustrated, including some specific phenomena, such as deformation lenses. Finally, by summarizing the analyzed data on steel laminates, conclusions and outlook are formulated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信