Flow, Heat-Transfer, and Mixing Behaviors of Scrap Steel in a Refining Ladle with Bottom Blowing

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Qing Fang, Xueting Li, Lichao Zhang, Yuxiang Li, Jianhao Wang, Hua Zhang, Hongwei Ni
{"title":"Flow, Heat-Transfer, and Mixing Behaviors of Scrap Steel in a Refining Ladle with Bottom Blowing","authors":"Qing Fang,&nbsp;Xueting Li,&nbsp;Lichao Zhang,&nbsp;Yuxiang Li,&nbsp;Jianhao Wang,&nbsp;Hua Zhang,&nbsp;Hongwei Ni","doi":"10.1002/srin.202400596","DOIUrl":null,"url":null,"abstract":"<p>The flow, heat-transfer, and mixing behaviors of steel scraps with different amounts, positions, and sizes added from the top of the bottom-blown 300 t ladle are numerically investigated and compared through a coupled model. In the results, it is shown that it takes 59 s to mix the temperature of molten steel after adding scrap steel at the position of <i>x</i> = 0 mm, <i>y</i> = 553.5 mm, and <i>z</i> = 3375 mm. The further the addition position is from the axial position of the permeable brick, the shorter the mixing time of the speed and temperature of molten steel. For the scrap amount of 0.5, 1.5, and 2.5 t, the mixing time of molten steel temperature is 44, 78, and 47 s, correspondingly, which exhibits a pattern of initial increase followed by decrease, with an ≈8 K decline in molten steel temperature for every additional 1.0 t of scrap. When considering the scrap size of 10, 30, and 50 mm, the average temperature mixing time of molten steel is 44, 61, and 45 s, respectively. In this research, theoretical guidance can be can be provided for the addition of scrap in ladle during practical production processes.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400596","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The flow, heat-transfer, and mixing behaviors of steel scraps with different amounts, positions, and sizes added from the top of the bottom-blown 300 t ladle are numerically investigated and compared through a coupled model. In the results, it is shown that it takes 59 s to mix the temperature of molten steel after adding scrap steel at the position of x = 0 mm, y = 553.5 mm, and z = 3375 mm. The further the addition position is from the axial position of the permeable brick, the shorter the mixing time of the speed and temperature of molten steel. For the scrap amount of 0.5, 1.5, and 2.5 t, the mixing time of molten steel temperature is 44, 78, and 47 s, correspondingly, which exhibits a pattern of initial increase followed by decrease, with an ≈8 K decline in molten steel temperature for every additional 1.0 t of scrap. When considering the scrap size of 10, 30, and 50 mm, the average temperature mixing time of molten steel is 44, 61, and 45 s, respectively. In this research, theoretical guidance can be can be provided for the addition of scrap in ladle during practical production processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信