{"title":"High-Temperature Oxidation Response of 444 Ferritic Stainless Steel in a Synthetic Automotive Exhaust Gas","authors":"Bin Sun, Yu-Chen Yao, Qing Lan","doi":"10.1002/srin.202400630","DOIUrl":null,"url":null,"abstract":"<p>The high-temperature oxidation behavior of 444 ferritic stainless steel has been studied in cyclic oxidation experiments using synthetic automotive exhaust gas atmospheres at 950 and 1050 °C. The weight gain per unit area of the 444 ferritic stainless steel following oxidation at 950 °C for 100 h iss 85.7% lower than recorded at 1050 °C. The oxide scale at both temperatures consisted of Fe–Cr and Mn–Cr spinels in the outer layer and Cr<sub>2</sub>O<sub>3</sub> in the inner layer. Nodule formation and spallation of the oxide scale are identified as the main causes of breakaway oxidation. The depth of the internal oxides gradually increases with the oxidation time. The nucleation and growth of internal SiO<sub>2</sub> result in the formation of metal protrusions, which are eventually consumed in the formation of a SiO<sub>2</sub> layer. The SiO<sub>2</sub> layer is formed at the interface between the oxide scale and the substrate at 1050 °C. The nucleation and growth of internal SiO<sub>2</sub>, in combination with lateral growth of SiO<sub>2</sub> at the Cr<sub>2</sub>O<sub>3</sub> layer/substrate interface contributed to the formation of the SiO<sub>2</sub> layer.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400630","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The high-temperature oxidation behavior of 444 ferritic stainless steel has been studied in cyclic oxidation experiments using synthetic automotive exhaust gas atmospheres at 950 and 1050 °C. The weight gain per unit area of the 444 ferritic stainless steel following oxidation at 950 °C for 100 h iss 85.7% lower than recorded at 1050 °C. The oxide scale at both temperatures consisted of Fe–Cr and Mn–Cr spinels in the outer layer and Cr2O3 in the inner layer. Nodule formation and spallation of the oxide scale are identified as the main causes of breakaway oxidation. The depth of the internal oxides gradually increases with the oxidation time. The nucleation and growth of internal SiO2 result in the formation of metal protrusions, which are eventually consumed in the formation of a SiO2 layer. The SiO2 layer is formed at the interface between the oxide scale and the substrate at 1050 °C. The nucleation and growth of internal SiO2, in combination with lateral growth of SiO2 at the Cr2O3 layer/substrate interface contributed to the formation of the SiO2 layer.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming