Surface Defect Identification of Strip Steel Using ViT-RepVGG

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhihuan Wang, Mujun Long, Pan Sun, Yanming Zhang, Wuguo Chen, Danbin Jia
{"title":"Surface Defect Identification of Strip Steel Using ViT-RepVGG","authors":"Zhihuan Wang,&nbsp;Mujun Long,&nbsp;Pan Sun,&nbsp;Yanming Zhang,&nbsp;Wuguo Chen,&nbsp;Danbin Jia","doi":"10.1002/srin.202400569","DOIUrl":null,"url":null,"abstract":"<p>In the production of strip steel, surface defect identification is crucial for improving product quality and ensuring smooth subsequent processes. Existing technologies face challenges such as low detection efficiency and susceptibility to environmental noise. This article employs an automated deep learning method without requiring consideration of complex environmental changes and proposes an improved RepVGG (ViT-RepVGG) model for surface defect identification. The model is based on the RepVGG architecture, and the study explores the impact of incorporating the self-attention mechanism of ViT under various addition strategies on model performance. A comparison is made between the optimized model and classic network models, as well as recently published models, in terms of identification performance. The research also examines the performance variations of the model under different hyperparameter settings and its identification performance for six types of defects. The results indicate that adding the ViT module to stage 3 of the A1-type RepVGG, with a learning rate, optimizer, and activation function set to 0.0001, Adam, and Gelu, respectively, yields the optimal ViT-RepVGG model performance. These findings demonstrate the feasibility of enhancing classification performance by incorporating the self-attention mechanism into neural networks, providing an effective foundation for the online identification of strip steel surface defects.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400569","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In the production of strip steel, surface defect identification is crucial for improving product quality and ensuring smooth subsequent processes. Existing technologies face challenges such as low detection efficiency and susceptibility to environmental noise. This article employs an automated deep learning method without requiring consideration of complex environmental changes and proposes an improved RepVGG (ViT-RepVGG) model for surface defect identification. The model is based on the RepVGG architecture, and the study explores the impact of incorporating the self-attention mechanism of ViT under various addition strategies on model performance. A comparison is made between the optimized model and classic network models, as well as recently published models, in terms of identification performance. The research also examines the performance variations of the model under different hyperparameter settings and its identification performance for six types of defects. The results indicate that adding the ViT module to stage 3 of the A1-type RepVGG, with a learning rate, optimizer, and activation function set to 0.0001, Adam, and Gelu, respectively, yields the optimal ViT-RepVGG model performance. These findings demonstrate the feasibility of enhancing classification performance by incorporating the self-attention mechanism into neural networks, providing an effective foundation for the online identification of strip steel surface defects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信