Solid-state Electronics最新文献

筛选
英文 中文
Comprehensive evaluation of gate-induced drain leakage in SOI stacked nanowire nMOSFETs operating in high-temperatures 全面评估在高温下工作的 SOI 叠层纳米线 nMOSFET 中的栅极诱导漏极泄漏
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-02-01 DOI: 10.1016/j.sse.2024.108865
Michelly de Souza , Antonio Cerdeira , Magali Estrada , Mikaël Cassé , Sylvain Barraud , Maud Vinet , Olivier Faynot , Marcelo A. Pavanello
{"title":"Comprehensive evaluation of gate-induced drain leakage in SOI stacked nanowire nMOSFETs operating in high-temperatures","authors":"Michelly de Souza ,&nbsp;Antonio Cerdeira ,&nbsp;Magali Estrada ,&nbsp;Mikaël Cassé ,&nbsp;Sylvain Barraud ,&nbsp;Maud Vinet ,&nbsp;Olivier Faynot ,&nbsp;Marcelo A. Pavanello","doi":"10.1016/j.sse.2024.108865","DOIUrl":"10.1016/j.sse.2024.108865","url":null,"abstract":"<div><p>This paper presents a comprehensive experimental analysis of the gate-induced drain leakage (GIDL) in two-level stacked nanowire SOI nMOSFETs for operating temperatures between 300 K and 580 K. Devices with different channel lengths and fin widths were measured. The results show that temperature rise increases the GIDL current for stacked nanowire transistors and its dependence on nanowire width. For a fixed gate voltage, the channel length reduction increases the GIDL current except in the presence of short-channel length. Three-dimensional TCAD simulations were performed, and the band-to-band generation was extracted for devices with different channel lengths, widths, and temperatures. The temperature rise increases valence and conduction energy levels, being more pronounced in the first, which causes the reduction of the lateral distance between the two levels, finally favoring the transversal band-to-band tunneling.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108865"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preconditioning of Ohmic p-GaN power HEMT for reproducible Vth measurements 预调节欧姆 p-GaN 功率 HEMT 以实现可重现的 Vth 测量
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-30 DOI: 10.1016/j.sse.2024.108868
L. Ghizzo , D. Trémouilles , F. Richardeau , G. Guibaud
{"title":"Preconditioning of Ohmic p-GaN power HEMT for reproducible Vth measurements","authors":"L. Ghizzo ,&nbsp;D. Trémouilles ,&nbsp;F. Richardeau ,&nbsp;G. Guibaud","doi":"10.1016/j.sse.2024.108868","DOIUrl":"10.1016/j.sse.2024.108868","url":null,"abstract":"<div><p>The fluctuation of the threshold voltage (<em>V<sub>th</sub></em>) presents a challenge while monitoring electrical drift in reliability studies of GaN HEMTs. While technologies, such as ohmic p-GaN, may lessen <em>V<sub>th</sub></em> fluctuations, the issue of recoverable charge trapping still remains. Therefore, it is crucial to adopt novel characterization methods when conducting reliability studies, in order to measure intrinsic changes rather than the charge-trapping effects that exist even in non-degraded transistors. One method expounded in this paper allows for a reliable and replicable measurement of <em>V<sub>th</sub></em> for an ohmic p-GaN gate HEMT GaN. A dedicated gate-bias profile is introduced immediately prior to the threshold-voltage measurement to stabilize it. This preconditioning phase necessitates a negative bias voltage followed by a suitably high voltage to be effective. The novel protocol introduced is also shown to be applicable to other HEMT GaN structures.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108868"},"PeriodicalIF":1.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of gate-source/drain overlap on FeFETs 栅源/漏极重叠对 FeFET 的影响
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-26 DOI: 10.1016/j.sse.2024.108862
Changha Kim , Dong-Oh Kim , Woo Young Choi
{"title":"Influence of gate-source/drain overlap on FeFETs","authors":"Changha Kim ,&nbsp;Dong-Oh Kim ,&nbsp;Woo Young Choi","doi":"10.1016/j.sse.2024.108862","DOIUrl":"10.1016/j.sse.2024.108862","url":null,"abstract":"<div><p>The influences of gate-source/drain overlap on ferroelectric field-effect transistors (FeFETs) are investigated with various gate-source/drain overlap lengths (<em>L</em><sub>ov</sub>’s) and doping concentrations of the gate-source/drain overlap region (<em>D</em><sub>ov</sub>’s). In contrast to conventional metal-ferroelectric-insulator-semiconductor (MFIS) FeFETs, a metal layer between a ferroelectric and an insulator layer allows overlap capacitance to affect the entire ferroelectric layer in metal-ferroelectric-metal–insulator-semiconductor (MFMIS) FeFETs. As <em>L</em><sub>ov</sub> and <em>D</em><sub>ov</sub> increase, the effective channel length of both FeFETs decreases. In the case of MFMIS FeFETs, the gate-to-source/drain overlap capacitance (<em>C</em><sub>ov,gate-S/D</sub>) increases, leading to a larger voltage drop across the ferroelectric layer. According to the simulation results, MFMIS FeFETs show a wider memory window (MW) and larger sensing margin than MFIS FeFETs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108862"},"PeriodicalIF":1.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139583903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved electrical performance of InAlN/GaN high electron mobility transistors with forming gas annealing 通过成型气体退火提高 InAlN/GaN 高电子迁移率晶体管的电气性能
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-19 DOI: 10.1016/j.sse.2024.108861
Siheng Chen , Peng Cui , Handoko Linewih , Kuan Yew Cheong , Mingsheng Xu , Xin Luo , Liu Wang , Jiuji Sun , Jiacheng Dai , Jisheng Han , Xiangang Xu
{"title":"Improved electrical performance of InAlN/GaN high electron mobility transistors with forming gas annealing","authors":"Siheng Chen ,&nbsp;Peng Cui ,&nbsp;Handoko Linewih ,&nbsp;Kuan Yew Cheong ,&nbsp;Mingsheng Xu ,&nbsp;Xin Luo ,&nbsp;Liu Wang ,&nbsp;Jiuji Sun ,&nbsp;Jiacheng Dai ,&nbsp;Jisheng Han ,&nbsp;Xiangang Xu","doi":"10.1016/j.sse.2024.108861","DOIUrl":"10.1016/j.sse.2024.108861","url":null,"abstract":"<div><p>The surface electronic states and defects of gallium nitride based high-electron-mobility transistors (HEMTs) play a critical role affecting channel electron density, electron mobility, leakage current, radio frequency (RF) power output and power added efficiency of devices. This article demonstrates the improved surface properties of InAlN/GaN HEMTs through forming gas (FG) annealing, resulting in a significantly improved electrical properties. The X-ray photoelectron spectra reveals a reduction of surface native oxide after FG H<sub>2</sub>/N<sub>2</sub> annealing whereby the amount of Ga–O bonds is decreased. Compared with N<sub>2</sub> annealing, an on-resistance of 1.68 Ω·mm, a subthreshold swing of 118 mV/dec, a transconductance peak of 513 mS/mm, a gate diode breakdown voltage of surpassing 42 V, and a high current/power gain cutoff frequency (<em>f</em><sub>T</sub>/<em>f</em><sub>max</sub>) of 165/165 GHz are achieved by the 50-nm InAlN/GaN HEMT on Si substrate.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108861"},"PeriodicalIF":1.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum information processing in electrically defined Silicon triple quantum dot systems 电定义硅三量子点系统中的量子信息处理
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-15 DOI: 10.1016/j.sse.2024.108863
Ji-Hoon Kang, Hoon Ryu
{"title":"Quantum information processing in electrically defined Silicon triple quantum dot systems","authors":"Ji-Hoon Kang,&nbsp;Hoon Ryu","doi":"10.1016/j.sse.2024.108863","DOIUrl":"10.1016/j.sse.2024.108863","url":null,"abstract":"<div><p><span><span>Quantum bits (qubits) operations in electrically defined </span>Silicon<span> (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic Si</span></span><span><math><mo>/</mo></math></span><span><span><span>Si-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic </span>programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit </span>Hamiltonian<span>. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.</span></span></p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108863"},"PeriodicalIF":1.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltage ramp stress based lifetime-prediction model of advanced Al-doped HfO2 dielectric for 2.5D MIMCAPs 基于电压斜坡应力的 2.5d mimcaps 高级掺铝 hfo2 介电寿命预测模型
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-15 DOI: 10.1016/j.sse.2024.108864
Corinna Fohn , Emmanuel Chery , Kristof Croes , Michele Stucchi , Valeri Afanas’ev
{"title":"Voltage ramp stress based lifetime-prediction model of advanced Al-doped HfO2 dielectric for 2.5D MIMCAPs","authors":"Corinna Fohn ,&nbsp;Emmanuel Chery ,&nbsp;Kristof Croes ,&nbsp;Michele Stucchi ,&nbsp;Valeri Afanas’ev","doi":"10.1016/j.sse.2024.108864","DOIUrl":"10.1016/j.sse.2024.108864","url":null,"abstract":"<div><p>The reliability of an Al-doped HfO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span><span><span> dielectric<span> used in a high density 2.5D MIMCAP is investigated by constant voltage stress (CVS) and voltage ramp stress (VRS) measurements. The good agreement of the results from the two techniques allows to propose a model for lifetime prediction based on the breakdown characteristics. The extracted </span></span>activation energy shows a voltage dependence associated with a change in the degradation characteristics of the high-</span><span><math><mi>κ</mi></math></span> material at high fields.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108864"},"PeriodicalIF":1.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep spiking neural networks with integrate and fire neuron using steep switching device 利用陡峭开关设备整合和发射神经元的深度尖峰神经网络
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-12 DOI: 10.1016/j.sse.2024.108860
Sung Yun Woo , Sangyeon Pak , Sung-Tae Lee
{"title":"Deep spiking neural networks with integrate and fire neuron using steep switching device","authors":"Sung Yun Woo ,&nbsp;Sangyeon Pak ,&nbsp;Sung-Tae Lee","doi":"10.1016/j.sse.2024.108860","DOIUrl":"10.1016/j.sse.2024.108860","url":null,"abstract":"<div><p>Deep learning has shown impressive capabilities in tasks like speech recognition and image classification. However, modern deep neural networks often demand a significant number of weights and extensive computational resources, creating efficiency challenges for applications on edge devices. To address these issues, researchers have introduced deep spiking neural networks (DSNNs) that leverage specialized hardware for synapses and neurons. DSNNs offer a potential solution by improving efficiency in edge-device applications. In this paper, the hardware based DSNN with integrate and fire neuron using steep switching device was investigated. We propose integrate and fire neuron using steep switching device to implement rate coding as input encoding method. Because the steep switching device has double-gate, the threshold voltage of the neuron circuits can be adaptively controlled, which changes the rates of input pulse. Hence, the adjustment of the threshold of neuron can be employed to mitigate the accuracy deterioration resulting from the transformation from deep neural networks (DNNs) to DSNNs. In addition, the off-current of proposed integrate and fire neuron circuit decreases significantly as the steep switching device has steep subthreshold swing. A system simulation of a hardware based DSNN shows that the adjustable threshold of the neuron circuit can achieve a high inference accuracy of 98.36 % which is comparable to that obtained with software based DNN.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108860"},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance potential of transistors based on tellurium nanowire arrays: A quantum transport study 基于碲纳米线阵列的晶体管的性能潜力:量子传输研究
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-09 DOI: 10.1016/j.sse.2024.108859
Ning Yang, Jing Guo
{"title":"Performance potential of transistors based on tellurium nanowire arrays: A quantum transport study","authors":"Ning Yang,&nbsp;Jing Guo","doi":"10.1016/j.sse.2024.108859","DOIUrl":"10.1016/j.sse.2024.108859","url":null,"abstract":"<div><p>Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (&gt;10<sup>9</sup>), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108859"},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon nitride resistance switching MIS cells doped with silicon atoms 掺杂硅原子的氮化硅电阻开关 MIS 电池
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2024-01-03 DOI: 10.1016/j.sse.2023.108851
A. Mavropoulis , N. Vasileiadis , C. Bonafos , P. Normand , V. Ioannou-Sougleridis , G. Ch. Sirakoulis , P. Dimitrakis
{"title":"Silicon nitride resistance switching MIS cells doped with silicon atoms","authors":"A. Mavropoulis ,&nbsp;N. Vasileiadis ,&nbsp;C. Bonafos ,&nbsp;P. Normand ,&nbsp;V. Ioannou-Sougleridis ,&nbsp;G. Ch. Sirakoulis ,&nbsp;P. Dimitrakis","doi":"10.1016/j.sse.2023.108851","DOIUrl":"10.1016/j.sse.2023.108851","url":null,"abstract":"<div><p>Stoichiometric SiN<sub>x</sub> layers (x = [N]/[Si] = 1.33) are doped with Si atoms by ultra-low energy ion implantation (ULE-II) and subsequently annealed at different temperatures in inert ambient conditions. Detailed material and memory cells characterization is performed to investigate the effect of Si dopants on the switching properties and performance of the fabricated resistive memory cells. In this context extensive dc current–voltage and impedance spectroscopy measurements are carried out systematically and the role of doping in dielectric properties of the nitride films is enlightened. The dc and ac conduction mechanisms are investigated in a comprehensive way. Room temperature retention characteristics of resistive states are also presented.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108851"},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismuth tungstate nanosheets sensors based on Temkin adsorption model for triethylamine detection 基于 Temkin 吸附模型的钨酸铋纳米片传感器用于检测三乙胺
IF 1.7 4区 物理与天体物理
Solid-state Electronics Pub Date : 2023-12-28 DOI: 10.1016/j.sse.2023.108850
Zhongyuan Wu , Fengyu Luo , Xiaohong Zheng , Jin Liu
{"title":"Bismuth tungstate nanosheets sensors based on Temkin adsorption model for triethylamine detection","authors":"Zhongyuan Wu ,&nbsp;Fengyu Luo ,&nbsp;Xiaohong Zheng ,&nbsp;Jin Liu","doi":"10.1016/j.sse.2023.108850","DOIUrl":"10.1016/j.sse.2023.108850","url":null,"abstract":"<div><p>Nanostructured Bi<sub>2</sub>WO<sub>6</sub> and Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub> were synthesized using a hydrothermal method. The crystal structure, morphology, and specific surface area were analyzed via X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The characterization results show that Bi<sub>2</sub>WO<sub>6</sub> has a higher specific surface area and a larger pore size than Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub>, which promote oxygen adsorption and surface reactions. Gas-sensitive tests show that both sensors have a lower detection limit of 2.5 ppm as well as short response and recovery times for detecting triethylamine (TEA). They also have excellent cycling and long-term stability at 180 °C and exhibit excellent gas-sensing performance. The Bi<sub>2</sub>WO<sub>6</sub> sensor has a higher response and sensitivity, as well as better selectivity, than the Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub> sensor, which is related to the uniformly layered structure of the former material. We have analyzed the mechanism that enables these sensors to detect TEA and have used the Temkin adsorption model to explain the linear relationship. We find that this model provides an excellent theoretical foundation for fitting the working curve of these semiconductor sensors.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108850"},"PeriodicalIF":1.7,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信