Optimizing unconventional trilayer SOTs for field-free switching

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nils Petter Jørstad , Wolfgang Goes , Siegfried Selberherr , Viktor Sverdlov
{"title":"Optimizing unconventional trilayer SOTs for field-free switching","authors":"Nils Petter Jørstad ,&nbsp;Wolfgang Goes ,&nbsp;Siegfried Selberherr ,&nbsp;Viktor Sverdlov","doi":"10.1016/j.sse.2025.109135","DOIUrl":null,"url":null,"abstract":"<div><div>The symmetry and magnitude of unconventional spin–orbit torques in ferromagnet/heavy metal/ferromagnet trilayers are investigated. Several spin-generating mechanisms are considered such as the anomalous Hall effect, anisotropic magnetoresistance, the Rashba–Edelstein effect, and the spin Hall effect. Optimal material thicknesses and magnetization configurations for maximizing out-of-plane spin torques for breaking the bilayer symmetry are presented. Furthermore, field-free switching simulations of a perpendicular SOT-MRAM utilizing the optimized trilayer torques are demonstrated, showing improved switching currents compared to another reported trilayer-based device.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"228 ","pages":"Article 109135"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000802","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetry and magnitude of unconventional spin–orbit torques in ferromagnet/heavy metal/ferromagnet trilayers are investigated. Several spin-generating mechanisms are considered such as the anomalous Hall effect, anisotropic magnetoresistance, the Rashba–Edelstein effect, and the spin Hall effect. Optimal material thicknesses and magnetization configurations for maximizing out-of-plane spin torques for breaking the bilayer symmetry are presented. Furthermore, field-free switching simulations of a perpendicular SOT-MRAM utilizing the optimized trilayer torques are demonstrated, showing improved switching currents compared to another reported trilayer-based device.
优化用于无场开关的非常规三层sot
研究了铁磁体/重金属/铁磁体三层结构中非常规自旋轨道转矩的对称性和大小。考虑了几种自旋产生机制,如反常霍尔效应、各向异性磁阻、Rashba-Edelstein效应和自旋霍尔效应。提出了使破坏双层对称的面外自旋力矩最大化的最佳材料厚度和磁化配置。此外,利用优化的三层扭矩对垂直SOT-MRAM进行了无场开关模拟,与另一种基于三层的器件相比,显示出更好的开关电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信