{"title":"Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications.","authors":"Jindou Zou, Jimeng Liao, Yunfei He, Tiantian Zhang, Yuxin Xiao, Hailan Wang, Mingyao Shen, Tao Yu, Wei Huang","doi":"10.34133/research.0392","DOIUrl":"10.34133/research.0392","url":null,"abstract":"<p><p>Photochromic polymer is defined as a series of materials based on photochromic units in polymer chains, which produces reversible color changes under irradiation with a particular wavelength. Currently, as the research progresses, it shows increasing potential applications in various fields, such as anti-counterfeiting, information storage, super-resolution imaging, and logic gates. However, there is a paucity of published reviews on the topic of photochromic polymers. Herein, this review discusses and summarizes the research progress and prospects of such materials, mainly summarizing the basic mechanisms, classification, and applications of azobenzene, spiropyran, and diarylethene photochromic polymers. Moreover, 3-dimensional (3D) printable photochromic polymers are worthy to be summarized specifically because of its innovative approach for practical application; meanwhile, the developing 3D printing technology has shown increasing potential opportunities for better applications. Finally, the current challenges and future directions of photochromic polymer materials are summarized.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0392"},"PeriodicalIF":11.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis.","authors":"Yiyun Zhang, Yiqing Zhu, Xin Bao, Zijian Dai, Qun Shen, Liyang Wang, Yong Xue","doi":"10.34133/research.0391","DOIUrl":"10.34133/research.0391","url":null,"abstract":"<p><p>Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from β-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0391"},"PeriodicalIF":11.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aggregation-Induced Emission-Active Photosensitizer-Mediated Photodynamic Therapy for Anti-Psoriasis.","authors":"Ping Zhu, Zhaoji Wu, Zhilu Yang, Tingting Tang, Yunhui Liao, Wen Zhao, Ying Huang, Tao Chen, Junjie Li, Chunmei Nong, Zhenzhen Wu, Guodong Hu, Yanshan Liu, Yinghua Chen","doi":"10.34133/research.0344","DOIUrl":"10.34133/research.0344","url":null,"abstract":"<p><p>Hyperproliferative keratinocytes and subcutaneous inflammation contribute to the characteristic symptoms of psoriasis, including erythema, scales, or scaly plaques on the skin. These symptoms significantly affect patients' quality of life and cause severe physical and psychological distress. However, current treatment strategies have limited therapeutic effect and may lead to adverse side effects. In this study, we present the novel organic photosensitizer TBTDC [5-(((5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)methylene)amino)-3-methylthiophene-2,4-dicarbonitrile] nanoparticles (NPs) with aggregation-induced emission (AIE) characteristics to mediate photodynamic therapy (TBTDC NP-PDT) for psoriasis treatment. We demonstrate that TBTDC NPs effectively generate reactive oxygen species upon light irradiation and lead to significant apoptosis of psoriatic keratinocytes. Furthermore, TBTDC NPs exhibit high cellular uptake in diseased keratinocytes and induce endoplasmic reticulum stress (ERS)-mediated autophagy, which can also enhance apoptosis. Importantly, TBTDC NPs show no cytotoxicity toward keratinocytes. These unique properties of TBTDC NPs enable remarkable therapeutic effects against psoriasis-like skin lesions and related inflammation in vivo. Overall, our AIE-active TBTDC NP-PDT represents a promising strategy for treating psoriasis in clinical settings.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0344"},"PeriodicalIF":11.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2024-05-31eCollection Date: 2024-01-01DOI: 10.34133/research.0384
Kangyu Jin, Bing Chen, Shengyi Han, Jingyi Dong, Shangping Cheng, Bin Qin, Jing Lu
{"title":"Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Cognitive Impairment and Intestinal Microecological Dysfunction Induced by High-Fat Diet in Rats.","authors":"Kangyu Jin, Bing Chen, Shengyi Han, Jingyi Dong, Shangping Cheng, Bin Qin, Jing Lu","doi":"10.34133/research.0384","DOIUrl":"10.34133/research.0384","url":null,"abstract":"<p><p>Consuming a high-fat diet (HFD) is widely recognized to cause obesity and result in chronic brain inflammation that impairs cognitive function. Repetitive transcranial magnetic stimulation (rTMS) has shown effectiveness in both weight loss and cognitive improvement, although the exact mechanism is still unknown. Our study examined the effects of rTMS on the brain and intestinal microecological dysfunction. rTMS successfully reduced cognitive decline caused by an HFD in behavioral assessments involving the Y maze and novel object recognition. This was accompanied by an increase in the number of new neurons and the transcription level of genes related to synaptic plasticity (spindlin 1, synaptophysin, and postsynaptic protein-95) in the hippocampus. It was reached that rTMS decreased the release of high mobility group box 1, activation of microglia, and inflammation in the brains of HFD rats. rTMS also reduced hypothalamic hypocretin levels and improved peripheral blood lipid metabolism. In addition, rTMS recovered the HFD-induced gut microbiome imbalances, metabolic disorders, and, in particular, reduced levels of the microvirus. Our research emphasized that rTMS enhanced cognitive abilities, resulting in positive impacts on brain inflammation, neurodegeneration, and the microbiota in the gut, indicating the potential connection between the brain and gut, proposing that rTMS could be a new approach to addressing cognitive deficits linked to obesity.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0384"},"PeriodicalIF":11.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2024-05-29eCollection Date: 2024-01-01DOI: 10.34133/research.0393
Wei Tang, Dong Yan, Kecheng Qin, Xinyu Guo, Yiding Zhong, Huxiu Xu, Huayong Yang, Jun Zou
{"title":"Single-Electrode Electrostatic Repulsion Phenomenon for Remote Actuation and Manipulation.","authors":"Wei Tang, Dong Yan, Kecheng Qin, Xinyu Guo, Yiding Zhong, Huxiu Xu, Huayong Yang, Jun Zou","doi":"10.34133/research.0393","DOIUrl":"10.34133/research.0393","url":null,"abstract":"<p><p>One of the fundamental principles of electrostatics is that an uncharged object will be attracted to a charged object through electrostatic induction as the two approaches one another. We refer to the charged object as a single electrode and examine the scenario where a positive voltage is applied. Because of electrostatic induction phenomenon, single-electrode electrostatics only generates electrostatic attraction forces. Here, we discover that single-electrode electrostatics can generate electrostatic repulsion forces and define this new phenomenon as single-electrode electrostatic repulsion phenomenon. We investigate the fundamental electrostatic phenomena, giving a curve of electrostatic force versus voltage and then defining 3 regions. Remote actuation and manipulation are essential technologies that are of enormous concern, with tweezers playing an important role. Various tweezers designed on the basis of external fields of optics, acoustics, and magnetism can be used for remote actuation and manipulation, but some inherent drawbacks still exist. Tweezers would benefit greatly from our discovery in electrostatics. On the basis of this discovery, we propose the concept of electrostatic tweezers, which can achieve noncontact and remote actuation and manipulation. Experimental characterizations and successful applications in metamaterials, robots, and manipulating objects demonstrated that electrostatic tweezers can produce large deformation rates (>6,000%), fast actuation (>100 Hz), and remote manipulating distance (~15 cm) and have the advantages of simple device structure, easy control, lightweight, no dielectric breakdown, and low cost. Our work may deepen people's understanding of single-electrode electrostatics and opens new opportunities for remote actuation and manipulation.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0393"},"PeriodicalIF":11.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2024-04-16eCollection Date: 2024-01-01DOI: 10.34133/research.0345
Jiayue Huang, Yan Zu, Lexiang Zhang, Wenguo Cui
{"title":"Progress in Procalcitonin Detection Based on Immunoassay.","authors":"Jiayue Huang, Yan Zu, Lexiang Zhang, Wenguo Cui","doi":"10.34133/research.0345","DOIUrl":"10.34133/research.0345","url":null,"abstract":"<p><p>Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0345"},"PeriodicalIF":11.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing Renewable Lignocellulosic Potential for Sustainable Wastewater Purification","authors":"Bin Wang, Jiaming Wang, Zhaohui Hu, An-Ling Zhu, Xiaojun Shen, Xuefei Cao, Jia-Long Wen, Tong-Qi Yuan","doi":"10.34133/research.0347","DOIUrl":"https://doi.org/10.34133/research.0347","url":null,"abstract":"Utilizing renewable lignocellulosic resources for wastewater remediation is crucial to achieving sustainable social development. However, the resulting by-products and the synthetic process characterized by complexity, high cost, and environmental pollution limit the further development of lignocellulose-based materials. Here, we developed a sustainable strategy that involved a new functional deep eutectic solvent (DES) to deconstruct industrial xylose residue into cellulose-rich residue with carboxyl groups, lignin with carboxyl and quaternary ammonium salt groups, and DES effluent rich in lignin fragments. Subsequently, these fractions equipped with customized functionality were used to produce efficient wastewater remediation materials in cost-effective and environmentally sound manners, namely, photocatalyst prepared by carboxyl-modified cellulose residue, biochar-based adsorbent originated from modified lignin, and flocculant synthesized by self-catalytic in situ copolymerization of residual DES effluent at room temperature. Under the no-waste principle, this strategy upgraded the whole components of waste lignocellulose into high-value-added wastewater remediation materials with excellent universality. These materials in coordination with each other can stepwise purify high-hazardous mineral processing wastewater into drinkable water, including the removal of 99.81% of suspended solids, almost all various heavy metal ions, and 97.09% chemical oxygen demand, respectively. This work provided promising solutions and blueprints for lignocellulosic resources to alleviate water shortages while also advancing the global goal of carbon neutrality.","PeriodicalId":21120,"journal":{"name":"Research","volume":"22 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2024-04-01eCollection Date: 2024-01-01DOI: 10.34133/research.0330
Meriem Ben Miled, Wenwen Liu, Yuanchang Liu
{"title":"Adaptive Unsupervised Learning-Based 3D Spatiotemporal Filter for Event-Driven Cameras.","authors":"Meriem Ben Miled, Wenwen Liu, Yuanchang Liu","doi":"10.34133/research.0330","DOIUrl":"10.34133/research.0330","url":null,"abstract":"<p><p>In the evolving landscape of robotics and visual navigation, event cameras have gained important traction, notably for their exceptional dynamic range, efficient power consumption, and low latency. Despite these advantages, conventional processing methods oversimplify the data into 2 dimensions, neglecting critical temporal information. To overcome this limitation, we propose a novel method that treats events as 3D time-discrete signals. Drawing inspiration from the intricate biological filtering systems inherent to the human visual apparatus, we have developed a 3D spatiotemporal filter based on unsupervised machine learning algorithm. This filter effectively reduces noise levels and performs data size reduction, with its parameters being dynamically adjusted based on population activity. This ensures adaptability and precision under various conditions, like changes in motion velocity and ambient lighting. In our novel validation approach, we first identify the noise type and determine its power spectral density in the event stream. We then apply a one-dimensional discrete fast Fourier transform to assess the filtered event data within the frequency domain, ensuring that the targeted noise frequencies are adequately reduced. Our research also delved into the impact of indoor lighting on event stream noise. Remarkably, our method led to a 37% decrease in the data point cloud, improving data quality in diverse outdoor settings.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0330"},"PeriodicalIF":11.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fut2 Deficiency Promotes Intestinal Stem Cell Aging by Damaging Mitochondrial Functions via Down-Regulating α1,2-Fucosylation of Asah2 and Npc1.","authors":"Caihan Duan, Zhe Wang, Junhao Wu, Chen Tan, Feifei Fang, Wei Qian, Chaoqun Han, Xiaohua Hou","doi":"10.34133/research.0343","DOIUrl":"10.34133/research.0343","url":null,"abstract":"<p><p>Fut2-mediated α1,2-fucosylation is important for gut homeostasis, including the intestinal stem cell (ISC). The stemness of ISC declines with age, and aging-associated ISC dysfunction is closely related to many age-related intestinal diseases. We previously found intestinal epithelial dysfunction in some aged Fut2 knockout mice. However, how Fut2-mediated α1,2-fucosylation affects ISC aging is still unknown. On this basis, the herein study aims to investigate the role of Fut2-mediated α1,2-fucosylation in ISC aging. Aging models in ISC-specific Fut2 knockout mice were established. ISCs were isolated for proteomics and N-glycoproteomics analysis. ISC functions and mitochondrial functions were examined in mice and organoids. Ulex europaeus agglutinin I chromatography and site-directed mutagenesis were used to validate the key target fucosylated proteins of Fut2. As a result, Fut2 knockout impaired ISC stemness and promoted aging marker expression in aged mice. Proteomics analysis indicated mitochondrial dysfunction in Fut2 knockout ISC. More injured mitochondria, elevated levels of reactive oxygen species, and decreased levels of adenosine 5'-triphosphate (ATP) in Fut2 knockout ISC were found. Moreover, respiratory chain complex impairment and mitophagy dysfunction in Fut2 knockout ISC were further noted. Finally, Fut2 was demonstrated to regulate mitochondrial functions mainly by regulating the α1,2-fucosylation of <i>N</i>-acyl sphingosine amidohydrolase 2 (Asah2) and Niemann-Pick type C intracellular cholesterol transporter 1 (Npc1). In conclusion, this study demonstrated the substantial role of Fut2 in regulating ISC functions during aging by affecting mitochondrial function. These findings provide novel insights into the molecular mechanisms of ISC aging and therapeutic strategies for age-related intestinal diseases.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0343"},"PeriodicalIF":11.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}