Yuening Wang, Xiangyu Meng, Wenxiong Shi, Yujiao Xie, Aochi Liu, Lei Xu, Lin Qiu, Xiaoyu Song, Mingjian Zhang, Jiahao Zhang, Jian Yu, Aiguo Wu, Xiaotian Wang, Jie Lin
{"title":"UiO-66表面增强拉曼散射传感器上单原子Cu的痕量和快速检测挥发性有机化合物。","authors":"Yuening Wang, Xiangyu Meng, Wenxiong Shi, Yujiao Xie, Aochi Liu, Lei Xu, Lin Qiu, Xiaoyu Song, Mingjian Zhang, Jiahao Zhang, Jian Yu, Aiguo Wu, Xiaotian Wang, Jie Lin","doi":"10.34133/research.0841","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) serve as critical biomarkers in exhaled breath for early-stage cancer patients, and their rapid, trace-level detection holds marked implications for cancer screening. Surface-enhanced Raman scattering (SERS) technology demonstrates strong potential for trace VOC gas detection due to its ultra-high sensitivity and immunity to water interference. However, while surface plasmon resonance (SPR)-free semiconductor substrates offer superior spectral stability and selectivity, their sensitivity toward VOC detection remains suboptimal. This study introduces a novel semiconductor-based SERS substrate composed of copper single atoms anchored on UiO-66 (Cu<sub>1</sub>/UiO-66), achieving a record-low detection limit of 10 parts per billion for VOC gases with a rapid 2-min response time, thereby elevating the gas-sensing performance of SPR-free substrates to unprecedented levels. The exceptional SERS activity originates from the highly delocalized electron properties of single-atomic copper, which effectively facilitates single-atom charge transfer processes. Concurrently, the incorporation of copper single atoms modulates the band structure of UiO-66, substantially enhancing the coupling resonance between the substrate and target molecules. In simulated breath tests mimicking lung cancer patients' exhalations, Cu<sub>1</sub>/UiO-66 exhibits remarkable VOC recognition capability and robust anti-interference performance. This work pioneers a new paradigm for ultra-sensitive, rapid detection of trace VOCs in exhaled breath, holding substantial promise for early cancer diagnostics and clinical translation.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0841"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368966/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Atom Cu Anchored on a UiO-66 Surface-Enhanced Raman Scattering Sensor for Trace and Rapid Detection of Volatile Organic Compounds.\",\"authors\":\"Yuening Wang, Xiangyu Meng, Wenxiong Shi, Yujiao Xie, Aochi Liu, Lei Xu, Lin Qiu, Xiaoyu Song, Mingjian Zhang, Jiahao Zhang, Jian Yu, Aiguo Wu, Xiaotian Wang, Jie Lin\",\"doi\":\"10.34133/research.0841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volatile organic compounds (VOCs) serve as critical biomarkers in exhaled breath for early-stage cancer patients, and their rapid, trace-level detection holds marked implications for cancer screening. Surface-enhanced Raman scattering (SERS) technology demonstrates strong potential for trace VOC gas detection due to its ultra-high sensitivity and immunity to water interference. However, while surface plasmon resonance (SPR)-free semiconductor substrates offer superior spectral stability and selectivity, their sensitivity toward VOC detection remains suboptimal. This study introduces a novel semiconductor-based SERS substrate composed of copper single atoms anchored on UiO-66 (Cu<sub>1</sub>/UiO-66), achieving a record-low detection limit of 10 parts per billion for VOC gases with a rapid 2-min response time, thereby elevating the gas-sensing performance of SPR-free substrates to unprecedented levels. The exceptional SERS activity originates from the highly delocalized electron properties of single-atomic copper, which effectively facilitates single-atom charge transfer processes. Concurrently, the incorporation of copper single atoms modulates the band structure of UiO-66, substantially enhancing the coupling resonance between the substrate and target molecules. In simulated breath tests mimicking lung cancer patients' exhalations, Cu<sub>1</sub>/UiO-66 exhibits remarkable VOC recognition capability and robust anti-interference performance. This work pioneers a new paradigm for ultra-sensitive, rapid detection of trace VOCs in exhaled breath, holding substantial promise for early cancer diagnostics and clinical translation.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0841\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0841\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0841","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Single-Atom Cu Anchored on a UiO-66 Surface-Enhanced Raman Scattering Sensor for Trace and Rapid Detection of Volatile Organic Compounds.
Volatile organic compounds (VOCs) serve as critical biomarkers in exhaled breath for early-stage cancer patients, and their rapid, trace-level detection holds marked implications for cancer screening. Surface-enhanced Raman scattering (SERS) technology demonstrates strong potential for trace VOC gas detection due to its ultra-high sensitivity and immunity to water interference. However, while surface plasmon resonance (SPR)-free semiconductor substrates offer superior spectral stability and selectivity, their sensitivity toward VOC detection remains suboptimal. This study introduces a novel semiconductor-based SERS substrate composed of copper single atoms anchored on UiO-66 (Cu1/UiO-66), achieving a record-low detection limit of 10 parts per billion for VOC gases with a rapid 2-min response time, thereby elevating the gas-sensing performance of SPR-free substrates to unprecedented levels. The exceptional SERS activity originates from the highly delocalized electron properties of single-atomic copper, which effectively facilitates single-atom charge transfer processes. Concurrently, the incorporation of copper single atoms modulates the band structure of UiO-66, substantially enhancing the coupling resonance between the substrate and target molecules. In simulated breath tests mimicking lung cancer patients' exhalations, Cu1/UiO-66 exhibits remarkable VOC recognition capability and robust anti-interference performance. This work pioneers a new paradigm for ultra-sensitive, rapid detection of trace VOCs in exhaled breath, holding substantial promise for early cancer diagnostics and clinical translation.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.