{"title":"Gecko-Inspired Intelligent Adhesive Structures for Rough Surfaces.","authors":"Yawen Shao, Miao Li, Hongmiao Tian, Fabo Zhao, Jian Xu, Hongrong Hou, Zhijun Zhang, Duorui Wang, Xiaoliang Chen, Wenjun Li, Hongjian Yan, Jinyou Shao","doi":"10.34133/research.0630","DOIUrl":"https://doi.org/10.34133/research.0630","url":null,"abstract":"<p><p>Biomimetic dry adhesive structures, inspired by geckos' climbing abilities, have attracted research attention in recent years. However, achieving superior adhesion on a rough surface remains an important challenge, which limits practical applications. Conventional bionic adhesion methods perform well on smooth surfaces, but adhesion strength drastically decreases on rough surfaces due to the reduced contact area. Generally, various adhesive structures have been proposed to increase the contact area without assessing adhesion states, against obtaining good performance on rough surfaces. If an intelligent adhesive approach could be introduced on rough surfaces, it would be beneficial for promoting the development of gecko-inspired adhesives. However, existing adhesive structures with the sensing function usually utilize the adhesive function to support the sensing function, i.e., a sensor with an adhesive function; for other few structures, the sensing function supports adhesion, but they do not focus on improving adhesion performance on rough surfaces. Inspired by the synergistic effect of a kinematic system during the crawling process of geckos, this study proposes an intelligent adhesive structure for rough surfaces. The proposed structure combines a hierarchical bionic dry adhesive structure based on gecko paw microhairs with a flexible capacitive sensor unit. Experimental observations and analytical modeling demonstrate that incorporating mushroom-shaped bionic dry adhesive structures with inclined support micropillars can reduce interface contact stiffness, notably enhancing adhesion on rough surfaces while allowing real-time monitoring of contact states. Moreover, this innovative smart adhesive structure facilitates morphology sensing of contact interfaces, presenting potential advancements in bionic adhesion for morphology sensing applications.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0630"},"PeriodicalIF":11.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circ-0001283 Aggravates Cardiac Hypertrophy by Targeting Myosin Light Chain 3 Protein.","authors":"Wenjing Wang, Lili Chen, Yiheng Zhao, Shuchen Zhang, Xiang Zhou","doi":"10.34133/research.0626","DOIUrl":"https://doi.org/10.34133/research.0626","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are differentially expressed in cardiac hypertrophy; however, the exact function and mechanisms during hypertrophy development are still unknown. Here, we explored the role of a newly discovered circRNA in the pathogenesis of myocardial hypertrophy. It was found that circ-0001283 promoted the progression of cardiac hypertrophy by interacting with myosin light chain 3 (MYL3) to inhibit the protein ubiquitination and enhance its protein expression, not by the competitive endogenous RNA mechanism. Further investigation demonstrated that the reduced hypertrophy induced by circ-0001283 knockdown was counteracted by overexpression of MYL3. Mechanistically, MYL3 facilitated myocardial hypertrophy by inducing autophagy in cells via PI3K/Akt/mTOR and ERK signaling pathways. In summary, circ-0001283 can bind directly to MYL3 and up-regulate its expression, thereby promoting autophagy to accelerate cardiac hypertrophy. Circ-0001283 may serve as a potential therapeutic target for cardiac hypertrophy.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0626"},"PeriodicalIF":11.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2025-02-24eCollection Date: 2025-01-01DOI: 10.34133/research.0627
Jian He, Jiawei Li, Yihan Sun, Yuanyuan Shen, Qi Wei, Dun Zhang, Danqing Feng, Peng Wang
{"title":"Molecular Mechanism of Oil-Infused Silicone Preventing Mussel Biofouling.","authors":"Jian He, Jiawei Li, Yihan Sun, Yuanyuan Shen, Qi Wei, Dun Zhang, Danqing Feng, Peng Wang","doi":"10.34133/research.0627","DOIUrl":"10.34133/research.0627","url":null,"abstract":"<p><p>Marine biofouling causes severe economical and environmental challenges to marine industries and maritime activities. Biofouling prevention has emerged as one of the most pressing issues in water-related industries. Recently, the slippery liquid-infused porous surfaces (SLIPSs) have shown great potential for biofouling prevention across a broad spectrum of fouling organisms. However, our understanding of the mechanisms by which SLIPSs prevent biofouling remains limited. In this study, we discovered that oil-infused polydimethylsiloxane elastomer (i-PDMS), a silicone-based SLIPS variant, significantly inhibited the sensory responses of the fouling mussel <i>Mytilopsis sallei</i>, particularly at its sensory organ, the foot. Using bioinformatics and molecular biology analyses, we demonstrated that i-PDMS disrupts larval settlement of <i>M. sallei</i> by interfering with the mechanosensitive transient receptor potential melastatin-subfamily member 7 (TRPM7) channel, which is highly expressed in the foot during the settlement process. Furthermore, adhesion assays and molecular dynamics simulations revealed that the secreted foot proteins of the mussel are unable to effectively interact with the i-PDMS surface due to nanoscale fluctuations at the material interface. These findings enhance our understanding of how fouling organisms sense and adhere to surfaces and provide deeper insights into the antifouling mechanisms of SLIPS.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0627"},"PeriodicalIF":11.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2025-02-24eCollection Date: 2025-01-01DOI: 10.34133/research.0624
Anna Jancik-Prochazkova, Katsuhiko Ariga
{"title":"Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale.","authors":"Anna Jancik-Prochazkova, Katsuhiko Ariga","doi":"10.34133/research.0624","DOIUrl":"10.34133/research.0624","url":null,"abstract":"<p><p>Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active \"on-the-fly\" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0624"},"PeriodicalIF":11.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2025-02-24eCollection Date: 2025-01-01DOI: 10.34133/research.0615
Minjie Mou, Zhichao Zhang, Ziqi Pan, Feng Zhu
{"title":"Deep Learning for Predicting Biomolecular Binding Sites of Proteins.","authors":"Minjie Mou, Zhichao Zhang, Ziqi Pan, Feng Zhu","doi":"10.34133/research.0615","DOIUrl":"10.34133/research.0615","url":null,"abstract":"<p><p>The rapid evolution of deep learning has markedly enhanced protein-biomolecule binding site prediction, offering insights essential for drug discovery, mutation analysis, and molecular biology. Advancements in both sequence-based and structure-based methods demonstrate their distinct strengths and limitations. Sequence-based approaches offer efficiency and adaptability, while structure-based techniques provide spatial precision but require high-quality structural data. Emerging trends in hybrid models that combine multimodal data, such as integrating sequence and structural information, along with innovations in geometric deep learning, present promising directions for improving prediction accuracy. This perspective summarizes challenges such as computational demands and dynamic modeling and proposes strategies for future research. The ultimate goal is the development of computationally efficient and flexible models capable of capturing the complexity of real-world biomolecular interactions, thereby broadening the scope and applicability of binding site predictions across a wide range of biomedical contexts.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0615"},"PeriodicalIF":11.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2025-02-21eCollection Date: 2025-01-01DOI: 10.34133/research.0622
Junjie Zhang, Kaiyuan Tang, Yongbin Yang, Dongliang Yang, Wenpei Fan
{"title":"Advanced Nanoprobe Strategies for Imaging Macrophage Polarization in Cancer Immunology.","authors":"Junjie Zhang, Kaiyuan Tang, Yongbin Yang, Dongliang Yang, Wenpei Fan","doi":"10.34133/research.0622","DOIUrl":"10.34133/research.0622","url":null,"abstract":"<p><p>Macrophages are ubiquitous within the human body and serve pivotal roles in immune surveillance, inflammation, and tissue homeostasis. Phenotypic plasticity is a hallmark of macrophages, allowing their polarization into distinct phenotypes M1 (pro-inflammatory, anti-tumor) and M2 (anti-inflammatory, pro-tumor) in response to local microenvironmental cues. In tumor tissues, the polarization of tumor-associated macrophages profoundly shapes the tumor microenvironment, influencing tumor progression, immune evasion, and metastasis. Therefore, the ability to image and monitor macrophage polarization is essential for comprehending tumor biology and optimizing therapeutic strategies. With the rapid advancement of nanomedicine, a diverse array of nanoprobes has been engineered to specifically target tumor-associated macrophages, offering new avenues for noninvasive in vivo imaging and real-time monitoring of macrophage dynamics within the tumor microenvironment. This perspective highlights recent advancements in macrophage-targeting nanoprobes for imaging macrophage polarization both in vitro and in vivo. It also addresses the current challenges in the field, such as enhancing probe sensitivity, specificity, and biocompatibility, while outlining the future directions for the development of next-generation nanoprobes aimed at precision oncology.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0622"},"PeriodicalIF":11.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Systematic Study on Digital Light Processing 3D Printing of 0-3 Ceramic Composites for Piezoelectric Metastructures.","authors":"Huiru Wang, Qingbo Lai, Dingcong Zhang, Xin Li, Jiayi Hu, Hongyan Yuan","doi":"10.34133/research.0595","DOIUrl":"10.34133/research.0595","url":null,"abstract":"<p><p>Digital light processing (DLP) is a high-speed, high-precision 3-dimensional (3D) printing technique gaining traction in the fabrication of ceramic composites. However, when printing 0-3 composites containing lead zirconate titanate (PZT) particles, a widely used piezoelectric ceramic, severe density and refractive index mismatches between the 2 phases pose challenges for ink synthesis and the printing process. Here, we systematically and quantitatively optimized DLP printing of PZT composites, streamlining process development and providing a solid theoretical and experimental foundation for broader applications of DLP technology. PZT particles were pretreated with air plasma to improve slurry uniformity and enhance stress transfer at the composite interface, leading to improved chemical modification, mechanical strength, and piezoelectric properties. We investigated the effects of key process parameters on printability and accuracy by analyzing the curing behavior of PZT-polymer composites. A quantitative model of the DLP curing process was introduced. Unlike stereolithography (SLA), DLP curing depth was found to depend on energy dose and light intensity, with higher intensities proving more favorable for printing 0-3 PZT composites. From depth/width-energy curves, optimal process parameters were determined. We designed and fabricated a soft piezoelectric metamaterial-based touch sensor using these parameters, achieving a customized output profile. This work offers critical insights into optimizing DLP for functional materials and expands the potential of 3D-printed piezoelectric composites.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0595"},"PeriodicalIF":11.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ResearchPub Date : 2025-02-20eCollection Date: 2025-01-01DOI: 10.34133/research.0610
Shichun Shen, Beiduo Tian, Haizhu Zhang, Yu-Chen Wang, Tao Li, Yang Cao
{"title":"Heart Failure and Gut Microbiota: What Is Cause and Effect?","authors":"Shichun Shen, Beiduo Tian, Haizhu Zhang, Yu-Chen Wang, Tao Li, Yang Cao","doi":"10.34133/research.0610","DOIUrl":"10.34133/research.0610","url":null,"abstract":"<p><p>Emerging evidence highlights the central role of gut microbiota in maintaining physiological homeostasis within the host. Disruptions in gut microbiota can destabilize systemic metabolism and inflammation, driving the onset and progression of cardiometabolic diseases. In heart failure (HF), intestinal dysfunction may induce the release of endotoxins and metabolites, leading to dysbiosis and exacerbating HF through the gut-heart axis. Understanding the relationship between gut microbiota and HF offers critical insights into disease mechanisms and therapeutic opportunities. Current research highlights promising potential to improve patient outcomes by restoring microbiota balance. In this review, we summarize the current studies in understanding the gut microbiota-HF connection and discuss avenues for future investigation.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0610"},"PeriodicalIF":11.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulating Integrin β1 to Restore Gonadotropin-Releasing Hormone-Tanycyte Unit Function in Polycystic Ovary Syndrome-Related Hypothalamic Dysregulation.","authors":"Yu Wang, Xiaoyu Tong, Yan Xiao, Yicong Wang, Wei Hu, Wenhan Lu, Yuning Chen, Jiajia Li, Wenhao Gao, Hongru Gao, Yicheng Tian, Sizhe Dai, Yi Feng","doi":"10.34133/research.0619","DOIUrl":"10.34133/research.0619","url":null,"abstract":"<p><p>Excessive gonadotropin-releasing hormone (GnRH) is considered to be an initiating factor in the etiology of polycystic ovary syndrome (PCOS). GnRH neuronal axons terminate at the hypothalamic arcuate nucleus and median eminence, where tanycytes, specialized glial cells, have been proposed to modulate GnRH secretion through plasticity. However, the precise role of the \"GnRH-tanycyte unit\" during the pathological state of PCOS has not been thoroughly explored. In this study, we demonstrated the architecture and distribution of GnRH neurons and tanycytes. In PCOS-like mice, retracted tanycyte processes and dysregulated GnRH-tanycyte unit may create an environment conducive to the excessive secretion of GnRH and subsequent reproductive endocrine dysfunction. Mechanistically, excessive androgens impair hypothalamic neuroglial homeostasis by acting through the androgen receptor (AR) and its downstream target integrin β1 (Itgb1), thereby suppressing the FAK/TGF-βR1/Smad2 signaling pathway. Both selective deletion of <i>AR</i> and overexpression of <i>Itgb1</i> in tanycytes counteracted the detrimental effects of androgens, alleviating endocrine dysfunction. Collectively, this study highlights the alterations in the GnRH-tanycyte unit mediated by androgen/AR/Itgb1 signaling and provides a novel perspective for developing therapies for hypothalamic hormone secretion disorders by maintaining solid neuroglial structures in the brain.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0619"},"PeriodicalIF":11.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prioritization of Lipid Metabolism Targets for the Diagnosis and Treatment of Cardiovascular Diseases.","authors":"Zhihua Wang, Shuo Chen, Fanshun Zhang, Shamil Akhmedov, Jianping Weng, Suowen Xu","doi":"10.34133/research.0618","DOIUrl":"10.34133/research.0618","url":null,"abstract":"<p><p><b>Background:</b> Cardiovascular diseases (CVD) are a major global health issue strongly associated with altered lipid metabolism. However, lipid metabolism-related pharmacological targets remain limited, leaving the therapeutic challenge of residual lipid-associated cardiovascular risk. The purpose of this study is to identify potentially novel lipid metabolism-related genes by systematic genomic and phenomics analysis, with an aim to discovering potentially new therapeutic targets and diagnosis biomarkers for CVD. <b>Methods:</b> In this study, we conducted a comprehensive and multidimensional evaluation of 881 lipid metabolism-related genes. Using genome-wide association study (GWAS)-based mendelian randomization (MR) causal inference methods, we screened for genes causally linked to the occurrence and development of CVD. Further validation was performed through colocalization analysis in 2 independent cohorts. Then, we employed reverse screening using phenonome-wide association studies (PheWAS) and a drug target-drug association analysis. Finally, we integrated serum proteomic data to develop a machine learning model comprising 5 proteins for disease prediction. <b>Results:</b> Our initial screening yielded 54 genes causally linked to CVD. Colocalization analysis in validation cohorts prioritized this to 29 genes marked correlated with CVD. Comparison and interaction analysis identified 13 therapeutic targets with potential for treating CVD and its complications. A machine learning model incorporating 5 proteins for CVD prediction achieved a high accuracy of 96.1%, suggesting its potential as a diagnostic tool in clinical practice. <b>Conclusion:</b> This study comprehensively reveals the complex relationship between lipid metabolism regulatory targets and CVD. Our findings provide new insights into the pathogenesis of CVD and identify potential therapeutic targets and drugs for its treatment. Additionally, the machine learning model developed in this study offers a promising tool for the diagnosis and prediction of CVD, paving the way for future research and clinical applications.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0618"},"PeriodicalIF":11.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}