Exploring Biomass Precursor Synthesis as a Determinant in Microbial Adaptation to Unadapted Carbon Sources with AdaptUC.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-10-17 eCollection Date: 2025-01-01 DOI:10.34133/research.0881
Jingyi Cai, Jiayu Liu, Fan Wei, Wenjun Wu, Wenqi Xu, Yu Wang, Qianqian Yuan, Hongwu Ma
{"title":"Exploring Biomass Precursor Synthesis as a Determinant in Microbial Adaptation to Unadapted Carbon Sources with AdaptUC.","authors":"Jingyi Cai, Jiayu Liu, Fan Wei, Wenjun Wu, Wenqi Xu, Yu Wang, Qianqian Yuan, Hongwu Ma","doi":"10.34133/research.0881","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial microorganisms often struggle to utilize renewable substrates such as methanol, formate, and xylose. Here, we introduce AdaptUC, a computational framework that demonstrates how the fraction of biomass precursors synthesized from unadapted carbon sources governs both the evolutionary driving force and the minimal substrate requirement. AdaptUC predicts gene knockout strategies for constructing the starting strain for adaptive laboratory evolution by selectively blocking metabolic pathways, thereby rendering specific precursor pools dependent on the unadapted substrate. We show that smaller dependency fractions correspond to higher driving forces for evolution of the starting strain. Case studies in <i>Escherichia coli</i> and <i>Corynebacterium glutamicum</i>, validated against experimental records and literature, confirm AdaptUC's ability to identify knockout combinations that fine-tune precursor dependency and accelerate adaptation. By leveraging genome-scale metabolic models, AdaptUC navigates vast candidate pools without combinatorial explosion, reducing experimental screening and prioritizing strains with stronger evolutionary drives.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0881"},"PeriodicalIF":10.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0881","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial microorganisms often struggle to utilize renewable substrates such as methanol, formate, and xylose. Here, we introduce AdaptUC, a computational framework that demonstrates how the fraction of biomass precursors synthesized from unadapted carbon sources governs both the evolutionary driving force and the minimal substrate requirement. AdaptUC predicts gene knockout strategies for constructing the starting strain for adaptive laboratory evolution by selectively blocking metabolic pathways, thereby rendering specific precursor pools dependent on the unadapted substrate. We show that smaller dependency fractions correspond to higher driving forces for evolution of the starting strain. Case studies in Escherichia coli and Corynebacterium glutamicum, validated against experimental records and literature, confirm AdaptUC's ability to identify knockout combinations that fine-tune precursor dependency and accelerate adaptation. By leveraging genome-scale metabolic models, AdaptUC navigates vast candidate pools without combinatorial explosion, reducing experimental screening and prioritizing strains with stronger evolutionary drives.

利用AdaptUC探索生物质前体合成作为微生物适应不适应碳源的决定因素。
工业微生物常常难以利用可再生底物,如甲醇、甲酸酯和木糖。在这里,我们介绍AdaptUC,这是一个计算框架,展示了从未适应的碳源合成的生物质前体的比例如何控制进化驱动力和最低底物需求。AdaptUC通过选择性阻断代谢途径,预测构建适应性实验室进化起始菌株的基因敲除策略,从而使特定的前体池依赖于未适应的底物。我们发现,较小的依赖分数对应于较高的驱动力的进化开始菌株。针对大肠杆菌和谷氨酸棒状杆菌的案例研究,根据实验记录和文献进行了验证,证实了AdaptUC能够识别微调前体依赖性和加速适应的敲除组合。通过利用基因组尺度的代谢模型,AdaptUC在没有组合爆炸的情况下导航巨大的候选库,减少了实验筛选,并优先考虑具有更强进化驱动的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信