Tubular-Cell-Derived Extracellular Vesicle miR-491-3p Aggravates Renal Ischemia-Reperfusion Injury by Inhibiting Macrophage SIRT1-Mediated Notch Intracellular Domain Deacetylation-Driven Ubiquitin-Proteasome Degradation.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-10-17 eCollection Date: 2025-01-01 DOI:10.34133/research.0929
Peihan Wang, Bojun Li, Tianbao Song, Zefeng Wang, Zhen Yin, Baofeng Song, Sheng Zhao, Xiangjun Zhou, Weimin Yu, Fan Cheng, Wei Li
{"title":"Tubular-Cell-Derived Extracellular Vesicle miR-491-3p Aggravates Renal Ischemia-Reperfusion Injury by Inhibiting Macrophage SIRT1-Mediated Notch Intracellular Domain Deacetylation-Driven Ubiquitin-Proteasome Degradation.","authors":"Peihan Wang, Bojun Li, Tianbao Song, Zefeng Wang, Zhen Yin, Baofeng Song, Sheng Zhao, Xiangjun Zhou, Weimin Yu, Fan Cheng, Wei Li","doi":"10.34133/research.0929","DOIUrl":null,"url":null,"abstract":"<p><p>Renal ischemia-reperfusion injury triggers substantial inflammatory reactions, with renal tubular epithelial cells (TECs) and macrophages playing crucial roles. Extracellular vesicles (EVs) are key mediators of intercellular signaling. However, the precise roles and mechanisms by which TEC-derived EVs influence macrophage functions remain unclear. This study investigated how miR-491-3p within EVs from TECs modulates macrophage polarization, thus worsening renal inflammation and damage. In models that are in vitro and in vivo, EVs enriched with miR-491-3p from TECs subjected to hypoxia/reoxygenation were shown to promote M1 polarization in macrophages, enhancing inflammatory responses and inducing TEC apoptosis. Mechanistically, miR-491-3p directly targets sirtuin 1 (SIRT1) in macrophages, inhibiting SIRT1-mediated Notch intracellular domain (NICD) deacetylation, thereby regulating NICD stability. This regulation blocks F-box and WD repeat domain-containing 7 (FBXW7)-NICD binding, reduces NICD ubiquitination, and activates the Notch/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Furthermore, Rab27a knockout, which limits EVs' release, substantially reduces M1 macrophage polarization and renal tissue damage. These findings indicate that miR-491-3p from TEC-derived EVs targets SIRT1, inhibiting the deacetylation of NICD mediated by SIRT1, which subsequently prevents ubiquitin-mediated NICD degradation. This mechanism modulates the inflammatory phenotype of macrophages and promotes the inflammatory response, thereby worsening renal injury induced by ischemia-reperfusion injury and highlighting a potential therapeutic target.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0929"},"PeriodicalIF":10.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0929","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Renal ischemia-reperfusion injury triggers substantial inflammatory reactions, with renal tubular epithelial cells (TECs) and macrophages playing crucial roles. Extracellular vesicles (EVs) are key mediators of intercellular signaling. However, the precise roles and mechanisms by which TEC-derived EVs influence macrophage functions remain unclear. This study investigated how miR-491-3p within EVs from TECs modulates macrophage polarization, thus worsening renal inflammation and damage. In models that are in vitro and in vivo, EVs enriched with miR-491-3p from TECs subjected to hypoxia/reoxygenation were shown to promote M1 polarization in macrophages, enhancing inflammatory responses and inducing TEC apoptosis. Mechanistically, miR-491-3p directly targets sirtuin 1 (SIRT1) in macrophages, inhibiting SIRT1-mediated Notch intracellular domain (NICD) deacetylation, thereby regulating NICD stability. This regulation blocks F-box and WD repeat domain-containing 7 (FBXW7)-NICD binding, reduces NICD ubiquitination, and activates the Notch/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Furthermore, Rab27a knockout, which limits EVs' release, substantially reduces M1 macrophage polarization and renal tissue damage. These findings indicate that miR-491-3p from TEC-derived EVs targets SIRT1, inhibiting the deacetylation of NICD mediated by SIRT1, which subsequently prevents ubiquitin-mediated NICD degradation. This mechanism modulates the inflammatory phenotype of macrophages and promotes the inflammatory response, thereby worsening renal injury induced by ischemia-reperfusion injury and highlighting a potential therapeutic target.

小管细胞来源的细胞外泡miR-491-3p通过抑制巨噬细胞sirt1介导的Notch胞内结构域去乙酰化驱动的泛素蛋白酶体降解加重肾缺血再灌注损伤
肾缺血再灌注损伤引发大量炎症反应,肾小管上皮细胞(tec)和巨噬细胞在其中起关键作用。细胞外囊泡(EVs)是细胞间信号传导的关键介质。然而,tec衍生的ev影响巨噬细胞功能的确切作用和机制尚不清楚。本研究探讨TECs ev内miR-491-3p如何调节巨噬细胞极化,从而加重肾脏炎症和损伤。在体外和体内模型中,从缺氧/再氧化的TEC中富集miR-491-3p的ev被证明可以促进巨噬细胞的M1极化,增强炎症反应并诱导TEC凋亡。在机制上,miR-491-3p直接作用于巨噬细胞中的SIRT1,抑制SIRT1介导的Notch胞内结构域(NICD)去乙酰化,从而调节NICD的稳定性。该调控阻断含F-box和WD重复结构域7 (FBXW7)-NICD结合,降低NICD泛素化,激活活化B细胞的Notch/核因子kappa-轻链增强子(NF-κB)通路。此外,敲除Rab27a抑制了ev的释放,显著减少了M1巨噬细胞极化和肾组织损伤。这些发现表明,tec衍生ev中的miR-491-3p靶向SIRT1,抑制SIRT1介导的NICD去乙酰化,从而阻止泛素介导的NICD降解。这一机制调节巨噬细胞的炎症表型,促进炎症反应,从而加重缺血再灌注损伤引起的肾损伤,成为潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信