Manyi Yang, Duo Zhang, Xinyan Wang, BoWen Li, Linfeng Zhang, Weinan E, Tong Zhu, Han Wang
{"title":"类药物分子的从头算精度神经网络潜力。","authors":"Manyi Yang, Duo Zhang, Xinyan Wang, BoWen Li, Linfeng Zhang, Weinan E, Tong Zhu, Han Wang","doi":"10.34133/research.0837","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of machine learning (ML) in computational chemistry heralds a transformative approach to one of the quintessential challenges in computer-aided drug design (CADD): the accurate and cost-effective calculation of atomic interactions. By leveraging a neural network (NN) potential, we address this balance and push the boundaries of the NN potential's representational capacity. Our work details the development of a robust general-purpose NN potential, architected on the framework of DPA-2, a deep learning potential with attention, which demonstrates remarkable fidelity in replicating the interatomic potential energy surface for drug-like molecules comprising 8 critical chemical elements: H, C, N, O, F, S, Cl, and P. We employed state-of-the-art molecular dynamic (MD) techniques, including temperature acceleration and enhanced sampling, to construct a comprehensive dataset to ensure exhaustive coverage of relevant configurational spaces. Our rigorous testing protocols, including torsion scanning, structure relaxation, and high-temperature MD simulations across various organic molecules, have culminated in an NN model that achieves chemical precision commensurate with the highly regarded density functional theory model while substantially outstripping the accuracy of prevalent semi-empirical methods. This study presents a leap forward in the predictive modeling of molecular interactions, offering extensive applications in drug development and beyond.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0837"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ab Initio Accuracy Neural Network Potential for Drug-Like Molecules.\",\"authors\":\"Manyi Yang, Duo Zhang, Xinyan Wang, BoWen Li, Linfeng Zhang, Weinan E, Tong Zhu, Han Wang\",\"doi\":\"10.34133/research.0837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of machine learning (ML) in computational chemistry heralds a transformative approach to one of the quintessential challenges in computer-aided drug design (CADD): the accurate and cost-effective calculation of atomic interactions. By leveraging a neural network (NN) potential, we address this balance and push the boundaries of the NN potential's representational capacity. Our work details the development of a robust general-purpose NN potential, architected on the framework of DPA-2, a deep learning potential with attention, which demonstrates remarkable fidelity in replicating the interatomic potential energy surface for drug-like molecules comprising 8 critical chemical elements: H, C, N, O, F, S, Cl, and P. We employed state-of-the-art molecular dynamic (MD) techniques, including temperature acceleration and enhanced sampling, to construct a comprehensive dataset to ensure exhaustive coverage of relevant configurational spaces. Our rigorous testing protocols, including torsion scanning, structure relaxation, and high-temperature MD simulations across various organic molecules, have culminated in an NN model that achieves chemical precision commensurate with the highly regarded density functional theory model while substantially outstripping the accuracy of prevalent semi-empirical methods. This study presents a leap forward in the predictive modeling of molecular interactions, offering extensive applications in drug development and beyond.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0837\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0837\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0837","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Ab Initio Accuracy Neural Network Potential for Drug-Like Molecules.
The advent of machine learning (ML) in computational chemistry heralds a transformative approach to one of the quintessential challenges in computer-aided drug design (CADD): the accurate and cost-effective calculation of atomic interactions. By leveraging a neural network (NN) potential, we address this balance and push the boundaries of the NN potential's representational capacity. Our work details the development of a robust general-purpose NN potential, architected on the framework of DPA-2, a deep learning potential with attention, which demonstrates remarkable fidelity in replicating the interatomic potential energy surface for drug-like molecules comprising 8 critical chemical elements: H, C, N, O, F, S, Cl, and P. We employed state-of-the-art molecular dynamic (MD) techniques, including temperature acceleration and enhanced sampling, to construct a comprehensive dataset to ensure exhaustive coverage of relevant configurational spaces. Our rigorous testing protocols, including torsion scanning, structure relaxation, and high-temperature MD simulations across various organic molecules, have culminated in an NN model that achieves chemical precision commensurate with the highly regarded density functional theory model while substantially outstripping the accuracy of prevalent semi-empirical methods. This study presents a leap forward in the predictive modeling of molecular interactions, offering extensive applications in drug development and beyond.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.