Larissa Pereira Alves, Widson Michael Dos Santos, Myla Lôbo de Souza, Larissa Araújo Rolim, Pedro José Rolim-Neto
{"title":"Herbal Technological Prospects of <i>Morus nigra</i> L.: A Systematic Patent Analysis Review.","authors":"Larissa Pereira Alves, Widson Michael Dos Santos, Myla Lôbo de Souza, Larissa Araújo Rolim, Pedro José Rolim-Neto","doi":"10.2174/1872208317666230821102411","DOIUrl":"10.2174/1872208317666230821102411","url":null,"abstract":"<p><strong>Background: </strong><i>Morus nigra</i> L. is a plant with significant potential for drug development due to the presence of numerous bioactive compounds in its various parts.</p><p><strong>Objectives: </strong>This article aims to compile the technological perspectives of <i>Morus nigra</i> L. towards drug development and therapeutic indications based on registered patents in databases.</p><p><strong>Methods: </strong>The study analyzed patents published within the last five years, focusing on products derived from different parts of the <i>Morus nigra</i> L. plant. Patent databases such as the European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), the World Intellectual Property Organization (WIPO), and the National Institute of Industrial Property Databases (INPI) were examined.</p><p><strong>Results: </strong>A total of 45 patents were categorized by country of origin, type of applicant, extraction method, and therapeutic indications. China had the highest number of patent filings (43.48%), and private companies were the primary technology patent holders (38.64%). Noteworthy extraction methods included ultrasound-assisted extraction, decoction, infusion, and maceration. The most utilized plant parts were leaves (44.44%), followed by fruits (35.56%), root bark (15.56%), and stems (4.44%). The main therapeutic indications identified were the treatment of hyperglycemia and dyslipidemia (43.33%), along with digestive problems, cosmetics, nutrition, and cleaning applications.</p><p><strong>Conclusion: </strong>The study of patents covers discoveries and advancements often absent in scientific articles, making a review focused on this advanced information crucial for expanding existing scientific knowledge. Even if some therapies have been explored previously, patents can reveal innovative approaches and fresh perspectives that contribute to sustained scientific progress.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10396064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues.","authors":"Rafaela Basso Sartori, Mariany Costa Deprá, Rosangela Rodrigues Dias, Mariane Bittencourt Fagundes, Leila Queiroz Zepka, Eduardo Jacob-Lopes","doi":"10.2174/1872208317666230504104051","DOIUrl":"10.2174/1872208317666230504104051","url":null,"abstract":"<p><p>Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41697232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soroush Sarmadi, Mohammad Reza Rahbar, Hamideh Najafi, Onyeka S Chukwudozie, Mohammad Hossein Morowvat
{"title":"<i>In Silico</i> Design and Evaluation of a Novel Therapeutic Agent Against the Spike Protein as a Novel Treatment Strategy for COVID-19 Treatment.","authors":"Soroush Sarmadi, Mohammad Reza Rahbar, Hamideh Najafi, Onyeka S Chukwudozie, Mohammad Hossein Morowvat","doi":"10.2174/1872208317666230523105759","DOIUrl":"10.2174/1872208317666230523105759","url":null,"abstract":"<p><strong>Background: </strong>Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that is associated with severe damage to other human organs. It causes by a novel coronavirus, and it is spreading all over the world. To date, there is some approved vaccine or therapeutic agent which could be effective against this disease. But their effectiveness against mutated strains is not studied completely. The spike glycoprotein on the surface of the coronaviruses gives the virus the ability to bind to host cell receptors and enter cells. Inhibition of attachment of these spikes can lead to virus neutralization by inhibiting viral entrance.</p><p><strong>Aims: </strong>In this study, we tried to use the virus entrance strategy against itself by utilizing virus receptor (ACE-2) in order to design an engineered protein consisting of a human Fc antibody fragment and a part of ACE-2, which reacts with virus RBD, and we also evaluated this interaction by computational methods and <i>in silico</i> methods. Subsequently, we have designed a new protein structure to bind with this site and inhibit the virus from attaching to its cell receptor, mechanically or chemically.</p><p><strong>Methods: </strong>Various <i>in silico</i> software, bioinformatics, and patent databases were used to retrieve the requested gene and protein sequences. The physicochemical properties and possibility of allergenicity were also examined. Three-dimensional structure prediction and molecular docking were also performed to develop the most suitable therapeutic protein.</p><p><strong>Results: </strong>The designed protein consisted of a total of 256 amino acids with a molecular weight of 28984.62 and 5.92 as a theoretical isoelectric point. Instability and aliphatic index and grand average of hydropathicity are 49.99, 69.57 and -0.594, respectively.</p><p><strong>Conclusions: </strong><i>In silico</i> studies can provide a good opportunity to study viral proteins and new drugs or compounds since they do not need direct exposure to infectious agents or equipped laboratories. The suggested therapeutic agent should be further characterized <i>in vitro </i>and <i>in vivo</i>.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatiane Batista Dos Santos, Denilson Dos Santos Gomes, Agenor Gomes Dos Santos Neto, Lívia Maria do Amorim Costa Gaspar, Daniela Droppa-Almeida
{"title":"Botanical Extracts and Compounds of <i>Castanea</i> Plants and Methods of Use: US20190125818A1 - The United States Patent Evaluation.","authors":"Tatiane Batista Dos Santos, Denilson Dos Santos Gomes, Agenor Gomes Dos Santos Neto, Lívia Maria do Amorim Costa Gaspar, Daniela Droppa-Almeida","doi":"10.2174/1872208317666230420105000","DOIUrl":"10.2174/1872208317666230420105000","url":null,"abstract":"<p><strong>Background: </strong>Bacterial infections are increasingly difficult to combat, which makes them a threat to public health on a global level. <i>Staphylococcus aureus</i> is considered one of the main causes of infections in hospitals, as it has a variety of virulence factors, as well as is able to produce bacterial biofilms, which, consequently, bring numerous damages to public health as a result of increased resistance to conventional antibiotics and a longer hospital stay. Therefore, the use of compounds extracted from medicinal plants is a potential pharmaceutically acceptable target, as they do not have toxicity and the potential to disrupt biofilms produced by <i>Staphylococcus aureus</i> already evidenced, thus revealing their relevance to our study.</p><p><strong>Objective: </strong>The objective of this work was to perform a critical analysis of a patent with natural extracts against bacterial biofilms found in the United States Patent and Trademark Office (USPTO) database, to map the possible bioactive compounds that may serve as potential future antimicrobial drugs.</p><p><strong>Methods: </strong>A technological survey was carried out to verify existing patents using natural extracts with anti-biofilm potential. For this, it was searched with the keywords: Botanical extracts AND biofilms; which were performed in the United States Patent and Trademark Office (USPTO) database. Thus, the selected patent used a non-aqueous extract partitioned and vacuum-contracted, subsequently lyophilized for assays with antimicrobial potential. Because of this, a patent was analyzed regarding its chemistry, and biological activity, followed by a critical analysis of the technology proposed in the invention.</p><p><strong>Results: </strong>When using the keywords Botanical extracts AND biofilms in the USPTO, it was possible to find twenty-two inventions; however, only four patents in the USPTO were in agreement with the proposal of the natural extract having antimicrobial activity and an anti-biofilm potential, of which two belonged to the same applicant with similar proposals. The key point of this invention was to enable the compounds of the <i>Castanea sativa</i> plant and its methods of obtaining the extract to present a significant antimicrobial action associated or not with antibiotics, promoting the development of new therapies against bacterial infections capable of disrupting biofilms. The invention developed a methodology for extracting <i>Castanea sativa</i>, in which pentacyclic triterpene compounds were found mostly in its leaves. Whereas for the extraction, the crude methanol extracts called extracts 224 from the ground leaves were made by maceration, filtered, combined, concentrated under pressure in rotary evaporators, and lyophilized. After that, they were resuspended in water and partitioned in succession with hexane, ethyl acetate, and butanol. The most active refined partition was the 224C extract with the solvent ethyl ace","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49668421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovation and Patenting Activities During COVID-19 and Advancement of Biochemical and Molecular Diagnosis in the Post- COVID-19 Era.","authors":"Suman Kumar Ray, Sukhes Mukherjee","doi":"10.2174/0118722083262217230921042127","DOIUrl":"10.2174/0118722083262217230921042127","url":null,"abstract":"<p><p>The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Goldyna M Simanjuntak, Azzania Fibriani, Amalia A Fananda, Nicholas Yamahoki
{"title":"Development of Moloney Murine Leukemia Virus Reverse Transcriptase Fused with Archaeal DNA-binding Protein Sis7a.","authors":"Goldyna M Simanjuntak, Azzania Fibriani, Amalia A Fananda, Nicholas Yamahoki","doi":"10.2174/1872208317666230403104302","DOIUrl":"10.2174/1872208317666230403104302","url":null,"abstract":"<p><strong>Introduction: </strong>Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV RT) is a common enzyme used to convert RNA sequences into cDNA. However, it still has its shortcomings, especially in terms of processivity and thermostability. According to a previous patent, the fusion of polymerase enzyme to an archaeal DNA-binding protein has been proven to enhance its performance. Furthermore, recent studies have also stated that the fusion of a polymerase enzyme to an archaeal DNA-binding protein is predicted to improve its thermostability and processivity.</p><p><strong>Aim: </strong>As an early stage of enzyme development, this study aimed to design, express, and purify enzymatically active MMLV RT fused with archaeal DNA-binding protein.</p><p><strong>Methods: </strong>RT fusion proteins were designed and evaluated using <i>in silico</i> methods. The RT fusion enzyme was then expressed in <i>Escherichia coli</i> BL21(DE3) and purified. Its reverse transcriptional activity was proved using reverse transcription quantitative polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>This study showed that MMLV RT fusion with Sis7a protein at its C-terminal end using commercial linker (GGVDMI) produced the best <i>in silico</i> evaluation results. The RT fusion was successfully expressed and purified. It was also known that the optimal condition for expression of the RT fusion was using 0.5 mM IPTG with post-induction incubation at room temperature (± 26°C) for 16 hours. In addition, the activity assay proved that the RT fusion has the reverse transcriptional activity.</p><p><strong>Conclusion: </strong>This study shows that the designed MMLV RT Sis7a fusion can be expressed and purified, is enzymatically active, and has the potential to be developed as an improved RT enzyme. Further study is still needed to prove its thermostability and processivity, and further characterize, and plan production scale-up of the MMLV RT Sis7a fusion for commercial use.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9254174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct Organogenesis of Citrus Cultivars from Shoot Tip Nodal Segments.","authors":"Zekeria Yusuf, Mulugeta Desta, Wassu Mohammed","doi":"10.2174/1872208317666230417084141","DOIUrl":"10.2174/1872208317666230417084141","url":null,"abstract":"<p><strong>Background: </strong>Citrus cultivar improvement via conventional breeding strategies is impeded by factors related to its reproductive biology. The orange is a hybrid between pomelo (<i>Citrus maxima</i>) and mandarin (<i>Citrus reticulata</i>). Among various orange cultivars, Valencia oranges have a bit of bitter tang mixed in with their sweetness, as Navel oranges are, the most widely cultivated citrus species, quite sweeter, and also don't contain any seeds. Tangelo mandarin orange cultivar is a hybrid of <i>C. reticulata × C. maxima</i> or <i>× C. paradisi</i>.</p><p><strong>Objective: </strong>The present study was undertaken to optimize the hormonal composition of the media with regard to plant growth regulators for <i>in vitro</i> propagation of sweet orange cultivars from nodal segment explants.</p><p><strong>Methods: </strong>The nodal segment explants were collected from three citrus cultivars, Washington Navel, Valencia and Tangelo. Murashige and Skoog (MS) medium supplemented with sucrose and different concentrations of growth regulators was used for shoot proliferation and root induction, and the optimum medium composition was assessed. The patent for Citrus Tissue Culture was obtained from the Office of Research Affairs, Haramaya University.</p><p><strong>Results: </strong>The results indicate that the highest shoot response was recorded for Washington's navel with maximum shoot proliferation rate (99.75%), shoot number per explant (1.76), shoot length (10.70 cm), leaf number per explants (3.54) after three weeks of culture. In all experiments, no growth was observed for the basal MS medium. Phytohormone combinations of IAA (1.2 mg/L) and kinetin (2.0 mg/L) were found to be the best for shoot proliferation. Among the cultivars, there were significant differences for the highest rooting rate (81.255), root number (2.22), and root length (2.95 cm) variables for Washington Navel. The lowest rooting rate (48.45%), root number (1.47) and root length (2.26 cm) were observed for Valencia. The highest rooting rate (84.90%), root number per microshoot (2.22) and root length (3.05 cm) was on MS medium supplemented with 1.5 mg/L NAA.</p><p><strong>Conclusion: </strong>A comparison of different concentrations of IAA and NAA on root induction of microshoots from nodal segments of citrus cultivars demonstrated NAA was a more effective hormone than IAA.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9751820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Five Escherichia coli Strains to Achieve the Maximum Yield of a Recombinant Immunotoxin Consisting of an Antibody against VEGF Conjugated with MAP30 Toxin in a Benchtop Bioreactor.","authors":"Mina Zarei, Mohammad Hossein Morowvat","doi":"10.2174/1872208317666230316111554","DOIUrl":"10.2174/1872208317666230316111554","url":null,"abstract":"<p><strong>Background: </strong>Cancer is among the leading causes of death worldwide, imposing high costs on the health systems of all societies. Extensive biological studies are required to discover appropriate therapies. <i>Escherichia coli</i> has long been regarded as one of the main biotechnological bio-factories to produce recombinant protein-based therapeutics. In the present study, five strains of <i>E. coli</i> were compared to achieve the maximum production of a previously designed recombinant immunotoxin-carrying MAP30 toxin against VEGF-overexpressed cancer cells in a benchtop bioreactor.</p><p><strong>Methods: </strong>The recombinant immunotoxin coding gene sequence was extracted from the NCBI database. The host used to produce the recombinant immunotoxin were five <i>E. coli</i> strains of BL21 (DE3), DH5α, SHuffle<sup>®</sup>T7, XL1-Blue, and Rosetta-gami<sup>TM</sup> (DE3). CaCl<sub>2</sub> method was used for bacterial transformation. Bacterial growth measurements were performed using optical density measurements at 600 nm. The immunotoxin production was measured using SDS-PAGE analysis. The best-producing strain was cultivated in a 10-L benchtop stirred tank bioreactor. Recent patents on this field were also studied.</p><p><strong>Results: </strong>The results demonstrated that the BL21 (DE3) strain had the highest expression of recombinant protein in comparison to other strains. Moreover, the cell growth of <i>E. coli</i> BL21 (DE3) and SHuffle<sup>®</sup>T7 strains before transformation in the LB medium, were significantly higher in comparison to other strains. Additionally, the transformation of Rosettagami was associated with decreased cell proliferation. The transformation of the XL1-Blue strain did not effect cell growth. Analysis of the growth kinetics demonstrated appropriate proliferation of the transformed BL21 (DE3) cells in the laboratory benchtop bioreactor.</p><p><strong>Conclusions: </strong>Based on the results of this study, the BL21 (DE3) strain could be used as a suitable host for the production of the recombinant immunotoxin against VEGF in stirred tank bioreactor, which can be employed for the treatment of tumors. Yet, its precise mechanism must be explored in extensive studies.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45511239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fundamental Uses of Peptides as a New Model in Both Treatment and Diagnosis.","authors":"Hend Okasha","doi":"10.2174/1872208317666230512143508","DOIUrl":"10.2174/1872208317666230512143508","url":null,"abstract":"<p><p>An amino acid short chain is known as a peptide. Peptide bonds are the connections that hold the amino acids of a peptide together in a particular order. Characteristically, the shorter length of peptides helps to identify them from proteins. Different ways are used to classify peptides, including chain length, source of peptides, or their biological functions. The fact that peptides serve several purposes suggests that there is a foundation for improvement in peptide production and structure to enhance action. In addition, many patents on peptides for therapeutic and diagnostic approaches have been obtained. This review aims to give an overview of peptides used recently in treatment and diagnosis.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42728317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human DNA Mutations and their Impact on Genetic Disorders.","authors":"Safia Samir","doi":"10.2174/0118722083255081231020055309","DOIUrl":"10.2174/0118722083255081231020055309","url":null,"abstract":"<p><p>DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}