{"title":"Conjugation of primary amine groups in targeted proteomics.","authors":"Yang Cai","doi":"10.1002/mas.21906","DOIUrl":"https://doi.org/10.1002/mas.21906","url":null,"abstract":"<p><p>Primary amines, in the form of unmodified N-terminus of peptide/protein and unmodified lysine residue, are perhaps the most important functional groups that can serve as the starting points in proteomic analysis, especially via mass spectrometry-based approaches. A variety of multifunctional probes that conjugate primary amine groups through covalent bonds have been developed and employed to facilitate protein/protein complex characterization, including identification, quantification, structure and localization elucidation, protein-protein interaction investigation, and so forth. As an integral part of more accurate peptide quantification in targeted proteomics, isobaric stable isotope-coded primary amine labeling approaches eventually facilitated protein/peptide characterization at the single-cell level, paving the way for single-cell proteomics. The development and advances in the field can be reviewed in terms of key components of a multifunctional probe: functional groups and chemistry for primary amine conjugation; hetero-bifunctional moiety for separation/enrichment of conjugated protein/protein complex; and functionalized linker/spacer. Perspectives are primarily focused on optimizing primary amine conjugation under physiological conditions to improve characterization of native proteins, especially those associated with the surface of living cells/microorganisms.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie Liuu, Annelaure Damont, Alain Perret, Olivier Firmesse, François Becher, Gwenaëlle Lavison-Bompard, Amandine Hueber, Amina S Woods, Ekaterina Darii, François Fenaille, Jean-Claude Tabet
{"title":"Origin and characterization of cyclodepsipeptides: Comprehensive structural approaches with focus on mass spectrometry analysis of alkali-cationized molecular species.","authors":"Sophie Liuu, Annelaure Damont, Alain Perret, Olivier Firmesse, François Becher, Gwenaëlle Lavison-Bompard, Amandine Hueber, Amina S Woods, Ekaterina Darii, François Fenaille, Jean-Claude Tabet","doi":"10.1002/mas.21904","DOIUrl":"https://doi.org/10.1002/mas.21904","url":null,"abstract":"<p><p>Cyclodepsipeptides (CDPs) represent a huge family of chemically and structurally diverse molecules with a wide ability for molecular interactions. CDPs are cyclic peptide-related natural products made up of both proteinogenic and nonproteinogenic amino acids linked by amide and ester bonds. The combined use of different analytical methods is required to accurately determine their integral structures including stereochemistry, thus allowing deeper insights into their often-intriguing bioactivities and their possible usefulness. Our goal is to present the various methods developed to accurately characterize CDPs. Presently, Marfey's method and NMR (nuclear magnetic resonance) are still considered the best for characterizing CDP configuration. Nevertheless, electrospray-high resolution tandem mass spectrometry (ESI-HRMS/MS) is of great value for efficiently resolving CDP's composition and sequences. For instance, recent data shows that the fragmentation of cationized CDPs (e.g., [M + Li]<sup>+</sup> and [M + Na]<sup>+</sup>) leads to selective cleavage of ester bonds and specific cationized product ions (b series) useful to get unprecedented sequence information. Thus, after a brief presentation of their structure, biological functions, and biosynthesis, we also provide a historic overview of these various analytical approaches as well as their advantages and limitations with a special emphasis on the emergence of methods based on HRMS/MS through recent fundamental works and applications.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Flender, Frédérique Vilenne, Charlotte Adams, Kurt Boonen, Dirk Valkenborg, Geert Baggerman
{"title":"Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain.","authors":"Daniel Flender, Frédérique Vilenne, Charlotte Adams, Kurt Boonen, Dirk Valkenborg, Geert Baggerman","doi":"10.1002/mas.21905","DOIUrl":"https://doi.org/10.1002/mas.21905","url":null,"abstract":"<p><p>Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reminiscences of a career in mass spectrometry in the US and in Spain","authors":"Emilio Gelpí","doi":"10.1002/mas.21803","DOIUrl":"10.1002/mas.21803","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 5","pages":"915-935"},"PeriodicalIF":6.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thierry N J Fouquet, Robert B Cody, Laurence Charles
{"title":"Degradation strategies for structural characterization of insoluble synthetic polymers by mass spectrometry.","authors":"Thierry N J Fouquet, Robert B Cody, Laurence Charles","doi":"10.1002/mas.21903","DOIUrl":"https://doi.org/10.1002/mas.21903","url":null,"abstract":"<p><p>With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry.","authors":"Cameron N Naylor, Gabe Nagy","doi":"10.1002/mas.21902","DOIUrl":"https://doi.org/10.1002/mas.21902","url":null,"abstract":"<p><p>Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein analysis by desorption electrospray ionization mass spectrometry.","authors":"Andre R Venter","doi":"10.1002/mas.21900","DOIUrl":"https://doi.org/10.1002/mas.21900","url":null,"abstract":"<p><p>This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mass spectrometry-based metabolomics for the investigation of antibiotic-bacterial interactions.","authors":"Xiaoyuan Lv, Zhenye Gao, Bingjie Li, Wenxiu Zhou, Shengman Zhang, Xin Wang","doi":"10.1002/mas.21899","DOIUrl":"https://doi.org/10.1002/mas.21899","url":null,"abstract":"<p><p>With the development of analytical technologies especially mass spectrometry, metabolomics is becoming increasingly hot in the field of studying antibiotic-bacterial interactions. On the one hand, metabolomics can reveal metabolic perturbations in bacteria in the presence of antibiotics and expose metabolic mechanisms. On the other hand, through in-depth analysis of bacterial metabolic profiles, biomarkers and bioactive secondary metabolites with great potential as drug precursors can be discovered. This review focuses on the experimental workflow of bacterial metabolomics and its application to study the interaction between bacteria and antibiotics. Metabolomics improves the understanding of antibiotic lethality, reveals metabolic perturbations in antibiotic-resistant bacteria, guides the diagnosis and antibiotic treatment of infectious diseases, and aids in the exploration of antibacterial metabolites in nature. Furthermore, current limitations and directions for future developments in this area are discussed.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khalisa Amir Hamzah, Natalie Turner, David Nichols, Luke J Ney
{"title":"Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review.","authors":"Khalisa Amir Hamzah, Natalie Turner, David Nichols, Luke J Ney","doi":"10.1002/mas.21897","DOIUrl":"https://doi.org/10.1002/mas.21897","url":null,"abstract":"<p><p>Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review.","authors":"Sergey Girel, Isabel Meister, Gaetan Glauser, Serge Rudaz","doi":"10.1002/mas.21898","DOIUrl":"https://doi.org/10.1002/mas.21898","url":null,"abstract":"<p><p>Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}