Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine最新文献

筛选
英文 中文
Assessment of the incisor angles as a function of golden proportion and lower facial height. 评估门牙角度作为黄金比例和下面部高度的函数。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-05-01 Epub Date: 2025-04-21 DOI: 10.1177/09544119251333905
Agustín Vidal-Lesso, José Alejandro Ortíz-García, Eduardo Villagómez-Cintora, Perla Pimienta-Rodríguez, Diana Martínez-Estrada, Rosa Alcocer-Covarrubias, Jose Jaime Lesso-García
{"title":"Assessment of the incisor angles as a function of golden proportion and lower facial height.","authors":"Agustín Vidal-Lesso, José Alejandro Ortíz-García, Eduardo Villagómez-Cintora, Perla Pimienta-Rodríguez, Diana Martínez-Estrada, Rosa Alcocer-Covarrubias, Jose Jaime Lesso-García","doi":"10.1177/09544119251333905","DOIUrl":"10.1177/09544119251333905","url":null,"abstract":"<p><p>Mathematical models to determine diverse parameters in biological systems have been a challenging and interesting topic for the scientific community. This work aimed to determine the angles of the lower and upper incisor teeth as a function of the angle of the lower facial height and the golden proportion. The cephalometric parameters reported by Ricketts like the lower facial height angle, the axis of the mandibular body (Xi-Pm), the line that forms the mandibular geometric center with the anterior nasal spine (Xi-ENA), the occlusal plane, the dental line, and the upper and lower incisors lines and some cephalometric constraints were used to determine the proposed models.The analysis of several values for the lower facial height in the Ricketts range showed that both the model for the upper incisor (A) and lower incisor (B) provide functional values for these angles, which are within the statistical range reported by Ricketts with a maximum mean deviation of 1.58° and a maximum percentage difference of up to 10.40%. Outside of the Ricketts range, a maximum mean deviation of 5.15° and a maximum difference of up to 49.72% was found regarding the mean values. As a first approximation, the proposed models let us determine and personalize the target angle for orthodontic treatment of the upper and lower incisors based on the lower facial height of each patient and the golden proportion. These models can be a starting point for further research in this area, considering other parameters to be added to the proposed models.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"448-457"},"PeriodicalIF":1.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the mechanical properties and cell cultural behavior of diamond lattice scaffolds with different porosities. 不同孔隙率金刚石晶格支架的力学性能及细胞培养行为评价。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-03-28 DOI: 10.1177/09544119251328434
Hojjat Ghahramanzadeh Asl, Selcen Çelik Uzuner, Salim Çam, Uğur Uzuner
{"title":"Evaluation of the mechanical properties and cell cultural behavior of diamond lattice scaffolds with different porosities.","authors":"Hojjat Ghahramanzadeh Asl, Selcen Çelik Uzuner, Salim Çam, Uğur Uzuner","doi":"10.1177/09544119251328434","DOIUrl":"10.1177/09544119251328434","url":null,"abstract":"<p><p>Metal porous structures are a common treatment for bone tissue loss when the loss exceeds the self-repair capacity of the human body. The structural characteristics, mechanical properties, and biological behavior of scaffold biomaterials exert a significant influence on the formation of new bone cells. The objective of this study was to ascertain the mechanical and cell biological behavior of scaffold structures with four distinct porosities (60%, 70%, 80%, and 90%). Scaffold structures with a diamond lattice unit cell were manufactured by the selective laser melting method using a CoCr alloy powder with a diameter of 4 mm and a height of 5 mm and were then subjected to a static compression test. Subsequently, human gingival fibroblast cells were seeded into each sample via the cell culture process, and cell formation was observed. According to the results obtained from the compression test, the sample with 60% porosity demonstrated optimal mechanical performance and effective modulus of elasticity. In the cell culture process, the sample with 60% porosity exhibited the highest adherence rate.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"388-397"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel method for analyzing foot motion during circumduction using an electromagnetic tracking system. 一种利用电磁跟踪系统分析绕行过程中足部运动的新方法。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-04-12 DOI: 10.1177/09544119251329994
Nicholas R Entress, Michael J Fassbind, Eric S Rohr, Michael S Orendurff, Bruce J Sangeorzan, William R Ledoux
{"title":"A novel method for analyzing foot motion during circumduction using an electromagnetic tracking system.","authors":"Nicholas R Entress, Michael J Fassbind, Eric S Rohr, Michael S Orendurff, Bruce J Sangeorzan, William R Ledoux","doi":"10.1177/09544119251329994","DOIUrl":"https://doi.org/10.1177/09544119251329994","url":null,"abstract":"<p><p>Circumduction of the hindfoot does not occur primarily in one of the traditional anatomic planes and can be difficult to describe precisely. The purpose of this study was to measure foot bone motion quickly and objectively to subsequently characterize differences among feet of varying shapes. As such, we have developed a quantitative characterization of foot bone motion during circumduction using electromagnetic tracking sensors. Five of these sensors were attached to the foot on specific bony landmarks, and one was attached to a footplate. The lower leg was held by padded clamps in a custom non-ferrous jig, and the foot was moved through a full range of circumduction. To describe the motion of the bones of the foot during circumduction, the sensor positions were fitted to 2D ellipses and 3D curves. A repeatability study on multiple feet (<i>n</i> = 7) demonstrated that multiple raters (<i>n</i> = 3) introduced more error than a single rater; therefore, a single rater was used for all subsequent data collection. Results from five neutrally aligned subjects demonstrated that bone motion was quantifiable by fitted ellipse parameters. Additional modeling with a paraboloid surface described the motion with improved accuracy. A further reduction in error was obtained using a 3D eighth-order Fourier series expansion fit. This method holds promise as a means for characterizing differences in foot bone motion among foot types during a clinical exam.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 4","pages":"349-359"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of custom-made insole on the mechanical response characteristics of the foot during static standing and walking. 定制鞋垫对足部静态站立和行走时机械响应特性的影响。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-04-16 DOI: 10.1177/09544119251328060
Chenyan Wang, Weijin Du, Zhiqiang Li, Weiyi Chen
{"title":"Effects of custom-made insole on the mechanical response characteristics of the foot during static standing and walking.","authors":"Chenyan Wang, Weijin Du, Zhiqiang Li, Weiyi Chen","doi":"10.1177/09544119251328060","DOIUrl":"https://doi.org/10.1177/09544119251328060","url":null,"abstract":"<p><p>Custom-made insoles are designed to redistribute foot load and prevent potential pain. Common methods to investigate the effectiveness of insoles include finite element method and experimental approach. However, most finite element research has focused on the two-dimensional plantar fascia stresses during static standing with insoles, rather than those of three-dimensional plantar fascia. Furthermore, the effects of insole with design parameters (metatarsal pad, toe pad, and arch support) on dynamic plantar pressures still need further exploration. Therefore, this study aimed to quantify the impact of custom-made insoles on foot biomechanics by combining both methods. Finite element method was employed to evaluate stress on the plantar fascia and bony structures when static standing, both barefoot and with a custom-made insole. Furthermore, 10 participants were recruited to investigate dynamic plantar pressures during walking barefoot and with insole. The relative time of four subphases during stance phase, total contact time, peak plantar pressure (Peak P), and pressure time integral (PTI) were assessed. Finite element results revealed reduced plantar fascia stresses and more uniform stress distribution over metatarsals and phalanges when standing with insole. Additionally, Peak P and PTI values in the second and third metatarsals were significantly lower when walking with insole. With the presence of insole, Peak P and PTI values in medial regions were significantly reduced, except for the midfoot region. In conclusion, custom-made insole with the addition of a metatarsal pad, toe pad, and arch support can effectively distribute foot tissue stress evenly, alleviate plantar pressure, and thus prevent pain.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 4","pages":"360-369"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144034145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D-printed hybrid portable simulator for skills training in arthroscopic knee surgery. 一种用于关节镜膝关节手术技能训练的3d打印混合便携式模拟器。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-03-31 DOI: 10.1177/09544119251328414
Carlos Javier Solis-Oviedo, Francisco Javier Pérez Jiménez, Jonathan Acuña Campos, César Iván Nájera Ríos, Miguel Ángel Bañuelos Saucedo, Fernando Pérez-Escamirosa
{"title":"A 3D-printed hybrid portable simulator for skills training in arthroscopic knee surgery.","authors":"Carlos Javier Solis-Oviedo, Francisco Javier Pérez Jiménez, Jonathan Acuña Campos, César Iván Nájera Ríos, Miguel Ángel Bañuelos Saucedo, Fernando Pérez-Escamirosa","doi":"10.1177/09544119251328414","DOIUrl":"10.1177/09544119251328414","url":null,"abstract":"<p><p>Arthroscopic surgery has become the first option for the treatment of joint injuries. However, training outside the operating room is limited by the lack of portability and high cost of high-fidelity simulators. The aim of this study is to present the ArthSim hybrid simulator, a low-cost portable device for the training of psychomotor skills of orthopaedic surgeons in arthroscopic knee surgery. The ArthSim simulator consists of a physical model of the knee with an integrated motion tracking system with a virtual reality application that captures and replicates the movements of the knee joint and the two arthroscopic instruments inside the virtual model, in a mixed reality approach to arthroscopy training. The functionality of ArthSim's technology was evaluated in two experiments: static and dynamic. The interaction of the physical knee joint and the arthroscopic instruments within the virtual model was evaluated by eight orthopaedic surgeons, who recreated the common positions of the knee, arthroscope, and instruments during the exploration of the internal structures. The results indicated a surgical total workspace of 80 mm<sup>3</sup> with a range of motion of 115° for flexion, 23° for abduction, and 33° for rotation in the knee joint. The measurements showed linearity and repeatability with errors below, for motion capture. Feedback provided by orthopaedic surgeons on ArthSim was used to identify the device's points of improvement. The ArthSim simulator provides an effective alternative for arthroscopic training in a hybrid simulation approach, offering natural haptics to enhance the surgical experience of orthopaedic surgeons.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"398-410"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoscope-assisted retrieval of separated instruments: An ex vivo comparative study of Masserann, microsonic, and loop techniques. 内窥镜辅助分离器械的检索:马塞兰、微音和循环技术的离体比较研究。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-04-12 DOI: 10.1177/09544119251331711
Cangül Keskin, Ali Keleş, Burcu Pirimoğlu, Defne Toplu
{"title":"Endoscope-assisted retrieval of separated instruments: An ex vivo comparative study of Masserann, microsonic, and loop techniques.","authors":"Cangül Keskin, Ali Keleş, Burcu Pirimoğlu, Defne Toplu","doi":"10.1177/09544119251331711","DOIUrl":"https://doi.org/10.1177/09544119251331711","url":null,"abstract":"<p><p>Instrument separation during root canal treatment can hinder effective cleaning and shaping, making reliable retrieval techniques essential. Endoscopic visualization might aid in instrument removal procedures offering direct magnification of root canal anatomy. This ex vivo study evaluated the success rate and procedure time of three instrument retrieval techniques - Masserann, microsonic, and loop techniques - under the visualization of dental operation microscope (DOM) assisted by an endoscope. Sixty extracted human mandibular single-rooted teeth with simulated fractures were assigned to the Masserann, microsonic, or ultrasonic with loop techniques (<i>n</i> = 20/group), each performed under endoscopic visualization alongside DOM. The success rate of instrument removal and procedure time were recorded. Complications, such as root perforation, apical extrusion and secondary fracture, were recorded. Statistical analysis was conducted using Pearson χ<sup>2</sup> and Kruskal-Wallis tests with 5% significance threshold. Success rates for the microsonic, Masserann, and ultrasonic with loop techniques were 80%, 70%, and 80%, respectively (<i>p</i> > 0.05). The average procedure times were 13.02 min for the microsonic technique, 17.25 min for the Masserann technique, and 17 min for the ultrasonic with loop technique (<i>p</i> > 0.05). The Masserann technique demonstrated a higher complication rate, with two cases each of perforation and apical extrusion, whereas no secondary fractures occurred in any group. Conclusively, the microsonic technique showed the highest success rate with the shortest retrieval time, indicating its efficiency and suitability for instrument removal from root canals, particularly when combined with enhanced visualization through endoscopy.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 4","pages":"381-387"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144050583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of electrode-tissue contact using multifrequency impedance analysis and Cole-Cole model fitting. 利用多频阻抗分析和Cole-Cole模型拟合评估电极-组织接触。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-04-01 Epub Date: 2025-04-12 DOI: 10.1177/09544119251330742
Mengying Zhan, Haitao Yao, Qijun Xie, Yingxi Wang, Yu Zhou
{"title":"Evaluation of electrode-tissue contact using multifrequency impedance analysis and Cole-Cole model fitting.","authors":"Mengying Zhan, Haitao Yao, Qijun Xie, Yingxi Wang, Yu Zhou","doi":"10.1177/09544119251330742","DOIUrl":"https://doi.org/10.1177/09544119251330742","url":null,"abstract":"<p><p>Atrial fibrillation (AF) is a common cardiac arrhythmia, and ablation is the primary treatment for patients with drug intolerance. The success of AF ablation depends on the adhesion of the catheter to the tissue. Existing electrical coupling index (ECI) and electrode-interface resistance (IR) methods based on impedance measurement to evaluate the adhesion between catheters and tissues do not explore the internal changes of the tissue during the compression process. This study introduces a new method to understand these internal changes using multi-frequency impedance combined with Cole-Cole model fitting, which is critical for accurate characterization of the contact between catheter and tissue. We used four-electrodes impedance measurement, using customized circuits and compression platform, applying 5-400 g (3.6-228.2 Pa) pressure to the bullfrog thighs to collect impedance data at frequencies of 500-100 kHz. The Cole-Cole model was then used for data fitting and analysis. The customized circuit accurately detects impedance up to 2 kΩ with less than 5% amplitude error, less than 15% phase error, and less than 6% error in model component values. Correlation analysis showed a significant linear relationship between extracellular fluid resistance and applied pressure (Pearson <i>R</i> ≈ 0.9, <i>p</i> < 0.05), indicating that extracellular fluid resistance increases with compression. This suggests that there is a significant linear positive correlation between the extracellular fluid resistance and the applied pressure, meaning that as the pressure increases, the extracellular fluid resistance correspondingly rises. This may provide a new perspective for studying the degree of catheter-tissue contact during atrial fibrillation ablation procedures.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 4","pages":"370-380"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144041877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced prediction method of biological tissue mechanical response based on hybrid prediction model. 基于混合预测模型的生物组织机械响应高级预测方法。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-03-01 Epub Date: 2025-03-22 DOI: 10.1177/09544119251327646
Jing Yang, Changwei Shi, Lihua Yao, Yixun Fang, Yiming Huang
{"title":"Advanced prediction method of biological tissue mechanical response based on hybrid prediction model.","authors":"Jing Yang, Changwei Shi, Lihua Yao, Yixun Fang, Yiming Huang","doi":"10.1177/09544119251327646","DOIUrl":"10.1177/09544119251327646","url":null,"abstract":"<p><p>The mechanical response of biological tissue is an important basis for evaluating its state during the surgical operation. Accurate prediction of mechanical response is helpful to improve the precision of surgical operation. In this paper, An advanced prediction method based on hybrid prediction model is proposed and used to predict the mechanical response of soft tissue. Firstly, the simulation model of soft tissue indentation experiment was established to obtain the mechanical response under continuous loading condition. The mechanical response of kindy tissue under discontinuous loading was obtained by the actual indentation experiment. Secondly, the mechanical response is predicted and the influence of loading parameters on the prediction accuracy is analyzed. The mechanical response under continuous loading was obtained by simulation, and the mechanical response under non-continuous loading was obtained by indentation experiment. The proposed advanced prediction method is verified by the obtained mechanical responses. The results show that the proposed method can predict the mechanical response of soft tissue well. The proposed prediction algorithm is helpful to predict the mechanical response in advance and avoid the potential tissue damage caused by surgical operation.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"286-293"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning and robotics enabled approach for audio based emotional pragmatics deficits identification in social communication disorders. 基于深度学习和机器人技术的音频情感语用缺陷识别方法。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-03-01 Epub Date: 2025-03-13 DOI: 10.1177/09544119251325331
Muskan Chawla, Surya Narayan Panda, Vikas Khullar
{"title":"Deep learning and robotics enabled approach for audio based emotional pragmatics deficits identification in social communication disorders.","authors":"Muskan Chawla, Surya Narayan Panda, Vikas Khullar","doi":"10.1177/09544119251325331","DOIUrl":"10.1177/09544119251325331","url":null,"abstract":"<p><p>The aim of this study is to develop Deep Learning (DL) enabled robotic systems to identify audio-based emotional pragmatics deficits in individuals with social pragmatic communication deficits. The novelty of the work stems from its integration of deep learning with a robotics platform for identifying emotional pragmatics deficits. In this study, the proposed methodology utilizes the implementation of machine and DL-based classification techniques, which have been applied to a collection of open-source datasets to identify audio emotions. The application of pre-processing and converting audio signals of different emotions utilizing Mel-Frequency Cepstral Coefficients (MFCC) resulted in improved emotion classification. The data generated using MFCC were used for the training of machine or DL models. The trained models were then tested on a randomly selected dataset. DL has been proven to be more effective in the identification of emotions using robotic structure. As the data generated by MFCC is of a single dimension, therefore, one-dimensional DL algorithms, such as 1D-Convolution Neural Network, Long Short-Term Memory, and Bidirectional-Long Short-Term Memory, were utilized. In comparison to other algorithms, bidirectional Long Short-Term Memory model has resulted in higher accuracy (96.24%), loss (0.2524 in value), precision (92.87%), and recall (92.87%) in comparison to other machine and DL algorithms. Further, the proposed model was deployed on the robotic structure for real-time detection for improvement of social-emotional pragmatic responses in individuals with deficits. The approach can serve as a potential tool for the individuals with pragmatic communication deficits.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"332-346"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of 3D printing in healthcare: A comprehensive review on treatment and training. 3D打印在医疗保健中的作用:对治疗和培训的全面回顾。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-03-01 Epub Date: 2025-03-22 DOI: 10.1177/09544119251321585
Maruf Nizam, Rajesh Purohit, Mohammad Taufik
{"title":"Role of 3D printing in healthcare: A comprehensive review on treatment and training.","authors":"Maruf Nizam, Rajesh Purohit, Mohammad Taufik","doi":"10.1177/09544119251321585","DOIUrl":"10.1177/09544119251321585","url":null,"abstract":"<p><p>Additive manufacturing (AM) is revolutionizing healthcare by enabling the creation of customized 3D printed (3DP) medical equipment, implants, orthoses, prosthetics, drugs, and organs. With the availability of different types of materials suitable for 3DP and healthcare applications, this technology allows for the precise fabrication of patient-oriented prosthetics, dental implants, and orthopedic devices, significantly improving fit and functionality. Additionally, 3DP drugs, such as Oral Dispersible Formulations (ODFs) and polypills, are surpassing the traditional \"one pill fits all\" concept, offering more tailored medication solutions. This innovation also supports the development of personalized medications and bioprinted tissues, opening the way for advancements in regenerative medications and tailored therapies. 3D-bioprinted organs are addressing the growing demand for organ transplants. In surgical planning, 3D-printed anatomical models provide students and professionals with hands-on practice, which is crucial for skill development and understanding complex anatomies. Surgeons can also practice and refine techniques before actual procedures, enhancing precision and improving outcomes during real operations. This paper focus on highlighting the progression and motivations behind the cross-disciplinary applications of AM within the healthcare sector providing customized medical devices, drug delivery systems and diagnostic tools for personalized treatment and skill refinement. This paper is designed for a broad audience, including manufacturing professionals and researchers, who are interested in exploring the medical implications of this transformative technology.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"239-265"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信