Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine最新文献

筛选
英文 中文
Development and validation of an automated Trunk Impairment Scale 2.0 scoring system using rule-based classification.
IF 1.7 4区 医学
Tay Jia Yi, Zaidi Mohd Ripin, Mohamad Ikhwan Zaini Ridzwan, Muhammad Fauzinizam Razali, Yeo Ying Heng, Nur Akasyah Binti Jaafar, Alexander Tan Wai Teng, Hazwani Binti Ahmad Yusof, Muhammad Hafiz Hanafi
{"title":"Development and validation of an automated Trunk Impairment Scale 2.0 scoring system using rule-based classification.","authors":"Tay Jia Yi, Zaidi Mohd Ripin, Mohamad Ikhwan Zaini Ridzwan, Muhammad Fauzinizam Razali, Yeo Ying Heng, Nur Akasyah Binti Jaafar, Alexander Tan Wai Teng, Hazwani Binti Ahmad Yusof, Muhammad Hafiz Hanafi","doi":"10.1177/09544119251317614","DOIUrl":"https://doi.org/10.1177/09544119251317614","url":null,"abstract":"<p><p>The Trunk Impairment Scale Version 2.0 (TIS 2.0) measures the motor impairment of the trunk after a stroke through the evaluation of dynamic sitting balance and co-ordination of trunk movement. Evaluations by physiotherapists depend on their ability in detecting minor changes in motion and observing limb movements and these can be time consuming and reduce their availability for rehabilitation work. An automated scoring system for TIS 2.0 was proposed to provide a more reproducible and standardized alternative to manual physiotherapist assessments. In the development phase, motion data from lay actors simulating stroke condition were collected using video motion capture system OpenCap. This data was utilized to create metrics and establish cut-off values for a rule-based classification. The discriminant abilities of the metrics were evaluated using the area under the curve (AUC). In the testing phase, the performance of the developed system was assessed on 19 stroke survivors (Berg Balance Scale score of 20-55) using both automated system and manual scoring by nine physiotherapists. The discriminant abilities of the features used in the dynamic sitting balance subscale are considered excellent to outstanding (AUC ≥ 0.717), and coordination subscale ranged from poor to outstanding (AUC ≥ 0.667). The automated scores aligned with physiotherapists' scores, achieving an average percentage of agreement 71.1%. The total TIS 2.0 scores generated by the automated method showed moderate correlation with the sum of mode-determined task scores (<i>R</i> = 0.526, <i>p</i> < 0.05). These findings suggest that the proposed automated system demonstrates comparable validity to assessments by physiotherapists.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251317614"},"PeriodicalIF":1.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic data generation in motion analysis: A generative deep learning framework.
IF 1.7 4区 医学
Mattia Perrone, Steven P Mell, John T Martin, Shane J Nho, Scott Simmons, Philip Malloy
{"title":"Synthetic data generation in motion analysis: A generative deep learning framework.","authors":"Mattia Perrone, Steven P Mell, John T Martin, Shane J Nho, Scott Simmons, Philip Malloy","doi":"10.1177/09544119251315877","DOIUrl":"https://doi.org/10.1177/09544119251315877","url":null,"abstract":"<p><p>Generative deep learning has emerged as a promising data augmentation technique in recent years. This approach becomes particularly valuable in areas such as motion analysis, where it is challenging to collect substantial amounts of data. The objective of the current study is to introduce a data augmentation strategy that relies on a variational autoencoder to generate synthetic data of kinetic and kinematic variables. The kinematic and kinetic variables consist of hip and knee joint angles and moments, respectively, in both sagittal and frontal plane, and ground reaction forces. Statistical parametric mapping (SPM) did not detect significant differences between real and synthetic data for each of the biomechanical variables considered. To further evaluate the effectiveness of this approach, a long-short term model (LSTM) was trained both only on real data (R) and on the combination of real and synthetic data (R&S); the performance of each of these two trained models was then assessed on real test data unseen during training. The principal findings included achieving comparable results in terms of nRMSE when predicting knee joint moments in the frontal (R&S: 9.86% vs R: 10.72%) and sagittal plane (R&S: 9.21% vs R: 9.75%), and hip joint moments in the frontal (R&S: 16.93% vs R: 16.79%) and sagittal plane (R&S: 13.29% vs R: 14.60%). The main novelty of this study lies in introducing an effective data augmentation approach in motion analysis settings.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251315877"},"PeriodicalIF":1.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of self-expandable pedicle screws with shape memory alloy structures on spinal fixation strength: A finite element study. 具有形状记忆合金结构的自膨胀椎弓根螺钉对脊柱固定强度的影响:有限元研究
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2024-11-23 DOI: 10.1177/09544119241298535
Mahdi Mohammad Asghari, Aisa Rassoli, Hedayeh Mehmanparast
{"title":"Effects of self-expandable pedicle screws with shape memory alloy structures on spinal fixation strength: A finite element study.","authors":"Mahdi Mohammad Asghari, Aisa Rassoli, Hedayeh Mehmanparast","doi":"10.1177/09544119241298535","DOIUrl":"10.1177/09544119241298535","url":null,"abstract":"<p><p>In many spine surgeries, pedicle screws are commonly used to stabilize vertebrae, however, loosening can be a complication. Different designs have shown improvements in fixation strength, with self-expandable screws featuring shape memory alloy (SMA) structures being of particular interest. This study aimed to assess the fixation strength of self-expandable pedicle screws made with SMA (specifically Nickel-Titanium) sheets. Three types of screws were evaluated: self-expandable screws with a smooth SMA surface, self-expandable screws with a porous SMA surface, and standard design screws. Each screw underwent pullout tests for comparison. Following the tests, the self-expandable screw with a porous surface exhibited the highest pullout force (1141.83 N), compared to 1056.86 N for the smooth self-expandable screw and 1104.25 N for the standard screw. The dissipated plastic strain energy differed among the screws, with values of 0.073 J for the porous self-expandable screw, 0.065 J for the smooth self-expandable screw, and 0.089 J for the standard pedicle screw. Notably, the porous self-expandable screw showed reduced stress on the bone-screw interface. Improving the mechanical design of pedicle screws could significantly enhance screw-bone fixation strength. The utilization of self-expandable pedicle screws with porous surface SMA sheets demonstrates superior performance, potentially mitigating complications like loosening.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"29-36"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Optimized lung tumor diagnosis system using enhanced version of crow search algorithm, Zernike moments, and support vector machine. 利用增强版乌鸦搜索算法、Zernike 矩和支持向量机优化肺部肿瘤诊断系统。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2021-12-01 DOI: 10.1177/09544119211055870
Yihao Luo, Long Zhang, Ruoning Song, Chuang Zhu, Jie Yang, Benjamin Badami
{"title":"Retracted: Optimized lung tumor diagnosis system using enhanced version of crow search algorithm, Zernike moments, and support vector machine.","authors":"Yihao Luo, Long Zhang, Ruoning Song, Chuang Zhu, Jie Yang, Benjamin Badami","doi":"10.1177/09544119211055870","DOIUrl":"10.1177/09544119211055870","url":null,"abstract":"","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"NP2-NP11"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39679814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning. 研究超声振动辅助清洗后LIPSS对Zr-BMG的细菌清洗性能。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2024-12-11 DOI: 10.1177/09544119241303307
Songlin Li, Kekang Mo, Cezhi Du
{"title":"Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning.","authors":"Songlin Li, Kekang Mo, Cezhi Du","doi":"10.1177/09544119241303307","DOIUrl":"10.1177/09544119241303307","url":null,"abstract":"<p><p>High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal. As an emerging medical metal, Zr-BMG was chosen for the target material. Femtosecond laser processing was employed to create LIPSS with both complete linear arrays and discontinuous linear arrays structures featuring surface defects by adjusting the scanning overlap rate. A high-concentration solution of S. aureus was used for co-cultivation, resulting in a surface bacterial coverage rate exceeding 95%. The study analyzed the synergistic sterilization effect of microstructured surfaces through variations in ultrasonic cleaning power and duration. The results indicated that surfaces with microstructures demonstrated significantly improved bacterial removal following ultrasonic cleaning. The bacterial removal rate was found to be proportional to the ultrasonic vibrator power, and the surface with a LIPSS structure outperformed the discontinuous LIPSS surface in bacterial removal efficiency. Optimal results were achieved with the LIPSS surface after 30 min of cleaning at 100 W ultrasonic power. However, there was minimal difference in bacterial removal between 10 and 30 min at the same power level. This study aims to provide methodological insights and data support for the efficient and high-quality cleaning of medical metal surfaces.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"106-117"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: "Optimized lung tumor diagnosis system using enhanced version of crow search algorithm, Zernike moments, and support vector machine". 已撤回:"使用增强版乌鸦搜索算法、Zernike 矩和支持向量机优化肺部肿瘤诊断系统"。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2024-05-16 DOI: 10.1177/09544119241255854
{"title":"Retracted: \"Optimized lung tumor diagnosis system using enhanced version of crow search algorithm, Zernike moments, and support vector machine\".","authors":"","doi":"10.1177/09544119241255854","DOIUrl":"10.1177/09544119241255854","url":null,"abstract":"","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"NP1"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance optimization of vessel sealing using a hemostatic ultrasonic scalpel. 使用止血超声刀进行血管密封的性能优化。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2024-11-26 DOI: 10.1177/09544119241298544
Zahra Hasani, Rezvan Abedini, Mohammad Saber Jahromi
{"title":"Performance optimization of vessel sealing using a hemostatic ultrasonic scalpel.","authors":"Zahra Hasani, Rezvan Abedini, Mohammad Saber Jahromi","doi":"10.1177/09544119241298544","DOIUrl":"10.1177/09544119241298544","url":null,"abstract":"<p><p>Using ultrasound technology as one of the therapeutic methods, in which ultrasound waves of different frequencies and intensities are employed, has significantly contributed to enhancing and facilitating the treatment process of various diseases. A Hemostatic Ultrasonic Scalpel can entail considerable advantages by simultaneously performing two operations tissue cutting and coagulation of biological tissues. In the present study, employing experimental design through response surface methodology, the effect of ultrasonic power and the duration of vibration application on the tissue has been investigated. Two parameters, namely the burst pressure of the sealed vessel and the length of the thermal seal zone, were measured by pressure testing and analysis image of the thermal effect region at the sealed vessel area, respectively. The pressure test results demonstrated that an input power of 52 W and the application of vibrations for 8 s under a constant force of 10 N, showed the optimized maximum burst pressure equal to 1100 mmHg. Examination of the sealed vessel images revealed a linear increase in thermal damage with increasing input power.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"83-91"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization-based two-dimensional symmetric tossing motion prediction and validation. 基于优化的二维对称抛掷运动预测与验证。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI: 10.1177/09544119241299917
Seunghun Lee, James Yang
{"title":"Optimization-based two-dimensional symmetric tossing motion prediction and validation.","authors":"Seunghun Lee, James Yang","doi":"10.1177/09544119241299917","DOIUrl":"10.1177/09544119241299917","url":null,"abstract":"<p><p>Human motion has been analyzed for decades based on experimentally collected subject data, serving various purposes, from enhancing athletic performance to assisting patients' recovery in rehabilitation and many individuals can benefit significantly from study advancements. Human motion prediction, is a more challenging task because no experimental data are available in advance, particularly concerning repetitive tasks, such as box lifting and tossing, to prevent injury risks. Tossing, a common task in various industries, involves the simultaneous vertical and horizontal movement of objects but often results in bodily strain. This paper presents an optimization-based method for predicting two-dimensional (2D) symmetric tossing motion without relying on experimental data. The method employs sequential quadratic programming, which optimizes dynamic effort by incorporating both static and dynamic joint torque limits. To validate the proposed model, experimental data were collected from 10 subjects performing tossing tasks using a motion capture system and force plates. The predicted joint angles and ground reaction forces considering dynamic joint strength constraints were compared with their corresponding experimental data to validate the model. In addition, the predicted joint torques differences are compared between joint dynamics strengths and static strengths. The results showed that the predicted optimal tossing motions range between the maximum and minimum of the experimental standard deviation for kinematic data across all subjects and the ground reaction forces are also within the experimental data range. This supports the validity of the prediction model. The findings of this study could have practical applications, especially in preventing the potential risk of injuries among workers who have daily tossing jobs.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"37-47"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel numerical approach to elucidate experimental scatter in portal pressure measurement using ultrasound contrast agent. 一种新的数值方法来解释超声造影剂测量门静脉压力的实验散射。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI: 10.1177/09544119241309989
Senthil Kumar Palani, Srinivasan Echchur Rangarajan, Arun K Thittai, Krishna Kumar Ramarathnam
{"title":"A novel numerical approach to elucidate experimental scatter in portal pressure measurement using ultrasound contrast agent.","authors":"Senthil Kumar Palani, Srinivasan Echchur Rangarajan, Arun K Thittai, Krishna Kumar Ramarathnam","doi":"10.1177/09544119241309989","DOIUrl":"10.1177/09544119241309989","url":null,"abstract":"<p><p>The use of ultrasound contrast agents (UCAs) for estimating portal pressure has recently gained attention due to its clinical promise, yet variability in acoustic amplitude poses challenges. UCAs contain microbubbles (1-10 µm in diameter), and understanding their acoustic response is essential to address this variability. However, systematic exploration of factors influencing microbubble behavior remains limited in current literature. This paper introduces a novel finite element analysis-based framework for portal pressure estimation, bridging key gaps. Developed in two stages, the model first captures the subharmonic response of a single bubble to an acoustic excitation of 50 kPa at 4 MHz, highlighting the influence of bubble size on resonance frequency. In the second stage, single-bubble responses are extended to analyze how microbubble population, size, and spatial distribution affect portal pressure estimation. For the first time, this study elucidates the experimental scatter in pressure measurements through a comprehensive consideration of these variables, offering new directions for UCA-based clinical pressure estimation in applications such as portal and cardiac pressure assessment.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"92-105"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welcome to Engineering in Medicine 2025. 欢迎访问 "医学工程 2025"。
IF 1.7 4区 医学
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2025-01-01 Epub Date: 2025-03-15 DOI: 10.1177/09544119251325081
Elizabeth Tanner
{"title":"Welcome to Engineering in Medicine 2025.","authors":"Elizabeth Tanner","doi":"10.1177/09544119251325081","DOIUrl":"https://doi.org/10.1177/09544119251325081","url":null,"abstract":"","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 1","pages":"3-4"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信