Effect of cage surface geometry on load transfer and ranges of motion in a fused lumbar spine model: A comparative finite element analysis.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Tirtharaj Banerjee, Kishore Pradeep, Aritra Karar, Bidyut Pal
{"title":"Effect of cage surface geometry on load transfer and ranges of motion in a fused lumbar spine model: A comparative finite element analysis.","authors":"Tirtharaj Banerjee, Kishore Pradeep, Aritra Karar, Bidyut Pal","doi":"10.1177/09544119251332072","DOIUrl":null,"url":null,"abstract":"<p><p>Lumbar degenerative disc diseases (DDDs) are the common causes of low back pain, leading to non-conservative treatments like fusion and non-fusion surgery as a last resort. Fusion surgery is the gold standard for addressing DDDs, where implants such as cages, pedicle screws and rods are used for posterior stabilization. Various finite element (FE) studies have reported using corrugated cage surface textures; some others have used flat textures for virtual implantation. No comparative studies have been reported on the biomechanical effects of fusion surgery under implantation with cages of varying surface textures. The present biomechanical study compares the mechanical behaviour of an L4-L5 segment implanted with cages of different surface textures. The surgical techniques used for implantation are posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion. The virtual surgical models were developed from a previously validated intact lumbar spine FE model and simulated for physiological loading conditions. Compared to the flat cage implantation, a higher magnitude of stress was experienced by the cages and pedicle screw-rod systems under corrugated cage implantation. The maximum von Mises stress generated in the PLIF corrugated cage was 80.69% more than that observed in the flat cage. The maximum stresses in the corrugated cage were higher than those of the flat cage by 38.43%-80.69%, considering all the applied loading conditions. The findings of the study suggest that corrugated cage surface texture and suitable material selection may help in improving the long-term stability of cages.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"423-435"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251332072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lumbar degenerative disc diseases (DDDs) are the common causes of low back pain, leading to non-conservative treatments like fusion and non-fusion surgery as a last resort. Fusion surgery is the gold standard for addressing DDDs, where implants such as cages, pedicle screws and rods are used for posterior stabilization. Various finite element (FE) studies have reported using corrugated cage surface textures; some others have used flat textures for virtual implantation. No comparative studies have been reported on the biomechanical effects of fusion surgery under implantation with cages of varying surface textures. The present biomechanical study compares the mechanical behaviour of an L4-L5 segment implanted with cages of different surface textures. The surgical techniques used for implantation are posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion. The virtual surgical models were developed from a previously validated intact lumbar spine FE model and simulated for physiological loading conditions. Compared to the flat cage implantation, a higher magnitude of stress was experienced by the cages and pedicle screw-rod systems under corrugated cage implantation. The maximum von Mises stress generated in the PLIF corrugated cage was 80.69% more than that observed in the flat cage. The maximum stresses in the corrugated cage were higher than those of the flat cage by 38.43%-80.69%, considering all the applied loading conditions. The findings of the study suggest that corrugated cage surface texture and suitable material selection may help in improving the long-term stability of cages.

融合腰椎模型中笼面几何形状对载荷传递和运动范围的影响:比较有限元分析。
腰椎退行性椎间盘疾病(DDDs)是腰痛的常见原因,导致非保守治疗,如融合和非融合手术作为最后的手段。融合手术是解决DDDs的金标准,其中植入物如笼、椎弓根螺钉和棒用于后路稳定。各种有限元(FE)研究报告使用波纹笼表面纹理;还有一些人使用平面纹理进行虚拟植入。目前还没有关于不同表面结构笼植入下融合手术生物力学效果的比较研究报道。本生物力学研究比较了植入不同表面结构的笼的L4-L5节段的力学行为。用于植入的手术技术是后路腰椎体间融合术(PLIF)和经椎间孔腰椎体间融合术。虚拟手术模型是根据先前验证的完整腰椎FE模型开发的,并模拟了生理负荷条件。与平面笼型植入相比,波纹笼型植入的笼型和椎弓根螺钉杆系统承受的应力更大。PLIF波纹笼产生的最大von Mises应力比扁平笼高80.69%。在所有加载条件下,波纹保持架的最大应力比扁平保持架高38.43% ~ 80.69%。研究结果表明,波纹笼的表面纹理和合适的材料选择可能有助于提高笼的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信