设计,制造和定制3d打印牙科种植体组件的临床前验证。

IF 1.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Vaibhav Sahni, Vishakha Grover, Satinder Singh, Rishab, Smruti Pradhan, Rupinder Singh, Amrinder Pal Singh, Ankush Mehta, Ashish Jain
{"title":"设计,制造和定制3d打印牙科种植体组件的临床前验证。","authors":"Vaibhav Sahni, Vishakha Grover, Satinder Singh, Rishab, Smruti Pradhan, Rupinder Singh, Amrinder Pal Singh, Ankush Mehta, Ashish Jain","doi":"10.1177/09544119251337363","DOIUrl":null,"url":null,"abstract":"<p><p>In the past few decades, 3D-printed dental implants have been manufactured, and significant studies have demonstrated the pre-clinical validation of such systems. However, studies have yet to tackle the ever-present issue of preventing the jumping gap to enhance overall outcomes. The present study details the utilization of patient computed tomography (CT) data to design and subsequently fabricate a multi-component customized dental implant assembly and customized instruments using direct metal laser sintering (DMLS) technology. The workflow was validated for two patient data sets (cases 1 and 2), which were used to render and print custom implant assemblies; the simulation data for these were compared with a commercially available solution. The present study incorporated a prototype stage as well as subjecting the customized implant assemblies to both static (Case 1: 38.89-77.81 MPa vs 75.47-158.09 MPa; Case 2: 83.95-106.65 MPa vs 55.23-126.57 MPa) and dynamic finite element analysis (Case 1: 41.08-84.09 MPa vs 75.45-187.91 MPa; Case 2: 106.81-108.70 MPa vs 79.18-135.48 MPa) along with resonance frequency analysis (Case 1: 7763.2 Hz vs 7003.6 Hz; Case 2: 7910.1 Hz vs 7102.1 Hz) as well as residual stress analysis. The assembly's stress patterns and resonance frequencies were evaluated against a commercially available implant system. It was observed that the customized implant assemblies tended to outperform the commercially available solution in most simulated scenarios.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"458-471"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On design, fabrication, and pre-clinical validation of customized 3D-printed dental implant assembly.\",\"authors\":\"Vaibhav Sahni, Vishakha Grover, Satinder Singh, Rishab, Smruti Pradhan, Rupinder Singh, Amrinder Pal Singh, Ankush Mehta, Ashish Jain\",\"doi\":\"10.1177/09544119251337363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past few decades, 3D-printed dental implants have been manufactured, and significant studies have demonstrated the pre-clinical validation of such systems. However, studies have yet to tackle the ever-present issue of preventing the jumping gap to enhance overall outcomes. The present study details the utilization of patient computed tomography (CT) data to design and subsequently fabricate a multi-component customized dental implant assembly and customized instruments using direct metal laser sintering (DMLS) technology. The workflow was validated for two patient data sets (cases 1 and 2), which were used to render and print custom implant assemblies; the simulation data for these were compared with a commercially available solution. The present study incorporated a prototype stage as well as subjecting the customized implant assemblies to both static (Case 1: 38.89-77.81 MPa vs 75.47-158.09 MPa; Case 2: 83.95-106.65 MPa vs 55.23-126.57 MPa) and dynamic finite element analysis (Case 1: 41.08-84.09 MPa vs 75.45-187.91 MPa; Case 2: 106.81-108.70 MPa vs 79.18-135.48 MPa) along with resonance frequency analysis (Case 1: 7763.2 Hz vs 7003.6 Hz; Case 2: 7910.1 Hz vs 7102.1 Hz) as well as residual stress analysis. The assembly's stress patterns and resonance frequencies were evaluated against a commercially available implant system. It was observed that the customized implant assemblies tended to outperform the commercially available solution in most simulated scenarios.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"458-471\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251337363\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251337363","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,3d打印牙种植体已经被制造出来,并且重要的研究已经证明了这种系统的临床前验证。然而,研究尚未解决一直存在的问题,即如何防止跳跃差距以提高总体结果。本研究详细介绍了利用患者计算机断层扫描(CT)数据设计并随后使用直接金属激光烧结(DMLS)技术制造多组件定制牙科种植体组装和定制器械。该工作流程针对两个患者数据集(病例1和2)进行了验证,这些数据集用于渲染和打印定制的植入体组件;这些模拟数据与市售解决方案进行了比较。目前的研究包括一个原型阶段,以及对定制的种植体组件进行静态(案例1:38.889-77.815 MPa vs 75.47-158.09 MPa;案例2:83.947-106.65 MPa vs 55.225-126.57 MPa)和动态有限元分析(案例1:41.076-84.09 MPa vs 75.448-187.91 MPa;案例2:106.81-108.7 MPa vs 79.176-135.48 MPa)以及共振频率分析(案例1:7763.2 Hz vs 7003.6 Hz;案例2:7910.1 Hz vs 7102.1 Hz)以及残余应力分析。装配的应力模式和共振频率根据市售植入系统进行评估。观察到,在大多数模拟场景中,定制的植入物组件往往优于市售解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On design, fabrication, and pre-clinical validation of customized 3D-printed dental implant assembly.

In the past few decades, 3D-printed dental implants have been manufactured, and significant studies have demonstrated the pre-clinical validation of such systems. However, studies have yet to tackle the ever-present issue of preventing the jumping gap to enhance overall outcomes. The present study details the utilization of patient computed tomography (CT) data to design and subsequently fabricate a multi-component customized dental implant assembly and customized instruments using direct metal laser sintering (DMLS) technology. The workflow was validated for two patient data sets (cases 1 and 2), which were used to render and print custom implant assemblies; the simulation data for these were compared with a commercially available solution. The present study incorporated a prototype stage as well as subjecting the customized implant assemblies to both static (Case 1: 38.89-77.81 MPa vs 75.47-158.09 MPa; Case 2: 83.95-106.65 MPa vs 55.23-126.57 MPa) and dynamic finite element analysis (Case 1: 41.08-84.09 MPa vs 75.45-187.91 MPa; Case 2: 106.81-108.70 MPa vs 79.18-135.48 MPa) along with resonance frequency analysis (Case 1: 7763.2 Hz vs 7003.6 Hz; Case 2: 7910.1 Hz vs 7102.1 Hz) as well as residual stress analysis. The assembly's stress patterns and resonance frequencies were evaluated against a commercially available implant system. It was observed that the customized implant assemblies tended to outperform the commercially available solution in most simulated scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信