The influence of arterial stenosis on blood damage under continuous flow.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Shuai Li, Wangwang Su, Zhenling Wei, Zhuo Li, Chengyang Liu, Peng Wu, Liudi Zhang
{"title":"The influence of arterial stenosis on blood damage under continuous flow.","authors":"Shuai Li, Wangwang Su, Zhenling Wei, Zhuo Li, Chengyang Liu, Peng Wu, Liudi Zhang","doi":"10.1177/09544119251341424","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial stenosis, resulting from plaque accumulation, can lead to serious conditions such as thrombosis and von Willebrand syndrome. This study investigates how variations in stenosis shape and severity affect red blood cell (RBC) and von Willebrand factor (VWF) damage through simulations and experimental approaches. A continuous flow generation device was utilized to create a blood circulation platform. The effects of different stenosis shapes and severities under continuous flow conditions on RBC damage and VWF degradation were examined. Blood samples were then analyzed for plasma-free hemoglobin concentration and VWF degradation. The results indicated that increased stenosis severity correlated with elevated hemolysis and a higher degradation rate of high molecular weight VWF (HMW-VWF). Rectangular stenosis induced more severe hemolysis and VWF degradation compared to elliptical stenosis at equivalent stenosis degrees. Both stenosis types demonstrated varying VWF degradation rates at low and medium/high stenosis levels, with elliptical stenosis showing particularly low VWF degradation at lower stenosis levels. The study highlights that different stenosis shapes and severities significantly affect blood damage under continuous flow. Greater stenosis severity resulted in increased blood flow velocity and wall shear stress (WSS), leading to enhanced hemolysis and VWF degradation, with rectangular stenosis showing more pronounced effects.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251341424"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251341424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Arterial stenosis, resulting from plaque accumulation, can lead to serious conditions such as thrombosis and von Willebrand syndrome. This study investigates how variations in stenosis shape and severity affect red blood cell (RBC) and von Willebrand factor (VWF) damage through simulations and experimental approaches. A continuous flow generation device was utilized to create a blood circulation platform. The effects of different stenosis shapes and severities under continuous flow conditions on RBC damage and VWF degradation were examined. Blood samples were then analyzed for plasma-free hemoglobin concentration and VWF degradation. The results indicated that increased stenosis severity correlated with elevated hemolysis and a higher degradation rate of high molecular weight VWF (HMW-VWF). Rectangular stenosis induced more severe hemolysis and VWF degradation compared to elliptical stenosis at equivalent stenosis degrees. Both stenosis types demonstrated varying VWF degradation rates at low and medium/high stenosis levels, with elliptical stenosis showing particularly low VWF degradation at lower stenosis levels. The study highlights that different stenosis shapes and severities significantly affect blood damage under continuous flow. Greater stenosis severity resulted in increased blood flow velocity and wall shear stress (WSS), leading to enhanced hemolysis and VWF degradation, with rectangular stenosis showing more pronounced effects.

连续血流条件下动脉狭窄对血液损伤的影响。
由斑块积聚引起的动脉狭窄可导致血栓形成和血管性血友病等严重疾病。本研究通过模拟和实验方法探讨狭窄形状和严重程度的变化如何影响红细胞(RBC)和血管性血友病因子(VWF)损伤。一个连续的血流产生装置被用来创造一个血液循环平台。研究了连续血流条件下不同狭窄形态和严重程度对红细胞损伤和VWF降解的影响。然后分析血液样本的血浆游离血红蛋白浓度和VWF降解。结果表明,狭窄程度的增加与溶血升高和高分子量VWF (HMW-VWF)的降解率升高相关。在相同的狭窄程度下,矩形狭窄比椭圆狭窄引起更严重的溶血和VWF降解。两种狭窄类型在低和中/高狭窄水平表现出不同的VWF降解率,椭圆形狭窄在低狭窄水平表现出特别低的VWF降解率。研究表明,在连续血流条件下,不同的狭窄形态和狭窄严重程度对血流损伤有显著影响。狭窄程度越大,血流速度和壁剪切应力(wall shear stress, WSS)增加,导致溶血和VWF降解增强,矩形狭窄的影响更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信