Polymer International最新文献

筛选
英文 中文
Functional and physicochemical characterization of marine exopolysaccharide derived from the novel bacterium Algoriphagus sp. K5R and its application towards biomineralization of gold and silver 从新型细菌 Algoriphagus sp. K5R 提取的海洋外多糖的功能和理化特性及其在金银生物矿化中的应用
IF 3.2 4区 化学
Polymer International Pub Date : 2024-08-27 DOI: 10.1002/pi.6693
Tixit Sagpariya, Nandita Srivastava, Sumeeta Kumari, Anil Kumar Pinnaka, Anirban Roy Choudhury
{"title":"Functional and physicochemical characterization of marine exopolysaccharide derived from the novel bacterium Algoriphagus sp. K5R and its application towards biomineralization of gold and silver","authors":"Tixit Sagpariya, Nandita Srivastava, Sumeeta Kumari, Anil Kumar Pinnaka, Anirban Roy Choudhury","doi":"10.1002/pi.6693","DOIUrl":"https://doi.org/10.1002/pi.6693","url":null,"abstract":"The widespread use of synthetic polymers in various industries has raised worldwide concerns regarding their ecological impact and effects on human health. As a result, biopolymers have emerged as a promising alternative. Among them, exopolysaccharides (EPSs) produced by microbes from terrestrial niches have been extensively studied. However, recent reports have indicated that microbes from marine environments can also produce unique EPSs that could serve as sustainable substitutes to meet the escalating demand for biopolymers. The present study, for the first time, reports EPS production from novel marine bacterium <jats:italic>Algoriphagus</jats:italic> sp. K5R for sustainable application development. Interestingly, physicochemical analyses suggest that EPS K5R is a high molecular weight (1190.63 kDa) heteropolysaccharide composed of galacturonic acid, glucose and mannose. To evaluate EPS production, growth and fermentation kinetics were performed, which revealed that it was a primary metabolite having a maximum production of 4.79 ± 0.57 g L<jats:sup>−1</jats:sup> with 2% (w/v) glucose. Moreover, EPS K5R exhibits exceptional functional properties, namely high water‐holding capacity (720% ± 80.29%) and oil‐holding capacity (493.33% ± 49.74% for coconut oil and 533.32% ± 17.47% for olive oil), and non‐Newtonian pseudo‐plastic behavior which render it a promising candidate for application in the cosmetics and food industries. In fact, its anti‐oxidant capabilities make it an ideal biological reducing agent for metal nanoparticle synthesis. Overall, this study highlights the potential of marine EPSs for a diverse array of industrial applications. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"4 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of biodegradable poly(lactic acid)/poly[(butylene diglycolate)‐co‐furandicarboxylate] blends with excellent toughness and gas barrier performance 制备具有优异韧性和气体阻隔性能的可生物降解聚(乳酸)/聚[(丁烯二醇)-共呋喃二甲酸酯]共混物
IF 3.2 4区 化学
Polymer International Pub Date : 2024-08-27 DOI: 10.1002/pi.6692
Yong Yang, Jing Shen, Erxun Hu, Yajin Fang, Zhibo Xu, Juan Li
{"title":"Preparation of biodegradable poly(lactic acid)/poly[(butylene diglycolate)‐co‐furandicarboxylate] blends with excellent toughness and gas barrier performance","authors":"Yong Yang, Jing Shen, Erxun Hu, Yajin Fang, Zhibo Xu, Juan Li","doi":"10.1002/pi.6692","DOIUrl":"https://doi.org/10.1002/pi.6692","url":null,"abstract":"Poly(lactic acid) (PLA) is known as one of the most promising biodegradable polyesters, while inherent brittleness and insufficient gas barrier performance limit its potential application as a film material. Herein, poly[(butylene diglycolate)‐<jats:italic>co</jats:italic>‐furandicarboxylate] (PBDF) with excellent flexibility and good gas barrier properties was synthesized and then melt‐blended with PLA. Compared with neat PLA, the elongation at break of the PLA/PBDF20 blend increased more than 40 times and reached over 176.7%. In addition, its O<jats:sub>2</jats:sub>, CO<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>O permeability coefficients decreased by 21.3%, 50.8% and 46.3%, respectively. Moreover, the PLA/PBDF20 blend also exhibited better biodegradability, with a weight loss rate increasing from 2.7% of neat PLA to 19.0% after 5 weeks of composting. Notably, incorporation of a multifunctional epoxy compatibilizer (Joncryl ADR®‐4368) into the PLA/PBDF blends further enhanced their toughness and gas barrier performance, which could be attributed to the improvement of the miscibility between PLA and PBDF. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"70 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of a starch derivative bearing chloroaniline groups and the evaluation of its hemolytic, cytotoxic and antibacterial activities 含氯苯胺基团的淀粉衍生物的制备及其溶血、细胞毒性和抗菌活性的评估
IF 2.9 4区 化学
Polymer International Pub Date : 2024-08-05 DOI: 10.1002/pi.6689
María Fernanda Valdez-Valdés, Francisco Javier Enríquez-Medrano, Alejandro Zugasti-Cruz, Crystel Aleyvick Sierra-Rivera, Eder Iván Martínez-Mora, Gerardo de Jesús Sosa-Santillán, Ernesto Oyervides-Muñoz
{"title":"Preparation of a starch derivative bearing chloroaniline groups and the evaluation of its hemolytic, cytotoxic and antibacterial activities","authors":"María Fernanda Valdez-Valdés,&nbsp;Francisco Javier Enríquez-Medrano,&nbsp;Alejandro Zugasti-Cruz,&nbsp;Crystel Aleyvick Sierra-Rivera,&nbsp;Eder Iván Martínez-Mora,&nbsp;Gerardo de Jesús Sosa-Santillán,&nbsp;Ernesto Oyervides-Muñoz","doi":"10.1002/pi.6689","DOIUrl":"10.1002/pi.6689","url":null,"abstract":"<p>A new starch derivative with antibacterial properties and non-hemolytic effect was synthesized through the chemical grafting of 4-chloroaniline onto the backbone of potato starch. In a first step, starch was extracted from potatoes grown in the region of Coahuila, Mexico, using the water steeping method. The hydroxyl groups (C5-C6) of the native starch were oxidized using sodium periodate. The resulting dialdehyde was then chemically modified through a Schiff base reaction with 4-chloroaniline. The chemical structure of this starch derivative was confirmed by Fourier transform infrared and <sup>1</sup>H NMR spectroscopies, the thermal properties were analyzed by thermogravimetric analysis without finding significant changes and the product showed antibacterial activity against Gram-negative <i>E. coli</i> and Gram-positive <i>S. aureus</i> strains. Finally, the hemolytic and cytotoxic effects of native starch and its derivative were studied, showing no hemolytic effect on isolated human red blood cells and no cytotoxic effect; therefore, it can be considered biocompatible. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 1","pages":"46-53"},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement in the impact and torsional properties of 3D‐printed biocompatible poly(lactic acid) locking bone plates: sustainable integration into healthcare applications 增强三维打印生物相容性聚(乳酸)锁定骨板的冲击和扭转性能:可持续地融入医疗保健应用中
IF 3.2 4区 化学
Polymer International Pub Date : 2024-08-02 DOI: 10.1002/pi.6688
Shrutika Sharma, Vishal Gupta, Deepa Mudgal
{"title":"Enhancement in the impact and torsional properties of 3D‐printed biocompatible poly(lactic acid) locking bone plates: sustainable integration into healthcare applications","authors":"Shrutika Sharma, Vishal Gupta, Deepa Mudgal","doi":"10.1002/pi.6688","DOIUrl":"https://doi.org/10.1002/pi.6688","url":null,"abstract":"Locking bone plates (LoBPs) are utilized in orthopedic surgeries for supporting segments of distal ulna fracture. Primarily constructed from metallic biomaterials that are much stiffer than natural bone, LoBPs result in stress shielding and are prone to corrosion. As a result, there has been a growing preference for biocompatible and biodegradable polymeric biomaterials for creating patient‐specific implants using 3D printing. Among various biomaterials, poly(lactic acid) (PLA) stands out due to its favorable biocompatibility and biodegradability. The layer‐by‐layer deposition in this process raises issues about layer bonding, reducing the mechanical strength of the implants. Nevertheless, adjusting process parameters can enhance the mechanical strength of the produced parts. The current study aimed to examine the influence of printing parameters on the impact strength and torque withstanding ability of biocompatible and biodegradable PLA‐based LoBPs using response surface methodology. The experimental results reveal that an increase in infill density and wall thickness minimize porosity and enhance inter‐layer bonding, imparting high impact and torsional resistance against forces. Conversely, an increase in layer height and printing speed induces porosity, leading to early fracture of layers under sudden impact and torsional forces. The fractured surface morphology of LoBPs after impact and torsional testing was analyzed using SEM. The MATLAB‐based optimization yielded maximum impact strength and torque values of 27.175 kJ m<jats:sup>−2</jats:sup> and 3644 N mm, respectively. The study underscores the potential of biocompatible and biodegradable PLA‐based 3D‐printed LoBPs for sustainable integration into biomedical applications. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"56 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on sustainable properties of plant fiber-reinforced polymer composites: characteristics and properties 植物纤维增强聚合物复合材料的可持续特性综述:特性和性能
IF 2.9 4区 化学
Polymer International Pub Date : 2024-07-31 DOI: 10.1002/pi.6686
Mariappan Sathish, Nachimuthu Radhika, Nitin Venuvanka, Lakshminarasimhan Rajeshkumar
{"title":"A review on sustainable properties of plant fiber-reinforced polymer composites: characteristics and properties","authors":"Mariappan Sathish,&nbsp;Nachimuthu Radhika,&nbsp;Nitin Venuvanka,&nbsp;Lakshminarasimhan Rajeshkumar","doi":"10.1002/pi.6686","DOIUrl":"10.1002/pi.6686","url":null,"abstract":"<p>Fiber-reinforced composites have emerged as versatile materials with applications spanning diverse industries, driven by their exceptional mechanical properties and lightweight nature. This review provides a comprehensive overview of natural fiber-reinforced composites, focusing on their enhanced mechanical and functional properties achieved through modern processing techniques. The study delves into various manufacturing methods, such as thermoforming, additive manufacturing, compression molding, electro-spinning, pultrusion and autoclave molding, which have significantly contributed to the advancement of these composites. The review further investigates the multifaceted properties of these composites, which highlights the versatility and applicability of these materials and provides a holistic understanding of their potential applications. Additionally, the work addresses current research gaps and identifies prospects, shedding light on the evolving landscape of natural fiber-reinforced composites. The synthesis of processing techniques, material properties and potential applications offers valuable insights for researchers, practitioners and industries aiming to harness the full potential of these sustainable and high-performance materials. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 11","pages":"887-943"},"PeriodicalIF":2.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing the moisture susceptibility of recycled hot‐mix asphalt mixture with composite modification technology 利用复合改性技术降低再生热拌沥青混合料的易受潮性
IF 3.2 4区 化学
Polymer International Pub Date : 2024-07-31 DOI: 10.1002/pi.6687
Jianping Xiong, Lihao Zeng, Yuquan Yao, Jie Gao, Di Yu
{"title":"Reducing the moisture susceptibility of recycled hot‐mix asphalt mixture with composite modification technology","authors":"Jianping Xiong, Lihao Zeng, Yuquan Yao, Jie Gao, Di Yu","doi":"10.1002/pi.6687","DOIUrl":"https://doi.org/10.1002/pi.6687","url":null,"abstract":"Styrene–butadiene–styrene block copolymer (SBS)‐modified asphalt is a key material for constructing recycled hot‐mix asphalt mixtures (RHMAs). However, these mixtures still risk insufficient moisture stability. To this end, this study investigates the feasibility of asphalt composite modification technology to enhance RHMA performance. SBS, high‐viscosity agent (HVA) and crumb‐rubber materials (CRM) were used to prepare SBS‐HVA‐ and SBS‐CRM‐modified asphalt, with SBS‐modified asphalt as the control group, and the adhesion properties of the asphalt were evaluated using surface free energy tests. RHMAs with 50% reclaimed asphalt pavement were then prepared with each type of modified asphalt. The moisture susceptibility of these mixtures was analyzed using moisture‐induced sensitivity, freeze–thaw splitting and immersion Marshall tests. It was found that HVA significantly enhanced the adhesion of SBS‐modified asphalt under dry conditions, while CRM had a minimal effect. Compared to RHMA with SBS‐modified asphalt, HVA and CRM additives are crucial for enhancing the moisture stability of RHMA in the immersion Marshall test. However, CRM does not improve the moisture stability of RHMA in the moisture‐induced sensitivity and freezing–thaw splitting tests. From the conducted study, it can be proposed that SBS and HVA composite‐modified asphalt can be utilized in RHMAs to achieve higher moisture stability. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"92 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphiphilic ligand-doped liquid crystal-based detection of Hg2+ ions on polyimide surface with alkyl pendent groups 基于两亲配体掺杂液晶的聚酰亚胺表面烷基悬垂基团 Hg2+ 离子检测技术
IF 2.9 4区 化学
Polymer International Pub Date : 2024-07-26 DOI: 10.1002/pi.6684
Nasir Majeed, Humaira Masood Siddiqi, Iqra Urooj, Faroha Liaqat
{"title":"Amphiphilic ligand-doped liquid crystal-based detection of Hg2+ ions on polyimide surface with alkyl pendent groups","authors":"Nasir Majeed,&nbsp;Humaira Masood Siddiqi,&nbsp;Iqra Urooj,&nbsp;Faroha Liaqat","doi":"10.1002/pi.6684","DOIUrl":"10.1002/pi.6684","url":null,"abstract":"<p>In this study, amphiphilic thiosemicarbazone was used to align liquid crystal (4-cyano-4′-pentylbiphenyl) in a homeotropic way on polyimide containing alkyl pendent groups (AHDPI), which was coated on a glass slide. The amphiphilic ligands 2-(4-(dodecyloxy)benzylid-ene)hydrazine-1-carbothioamide (DT) and 2-(1-dodecyl-2-oxoindolin-3-ylidene)hydrazine-1-carbothioamide (IT) were doped with liquid crystal (LC) to develop LC-based sensors to detect Hg<sup>2+</sup> ions in water. The selective interaction of carbothioamide with Hg<sup>2+</sup> ions triggered the orientation transition of LC from homeotropic to parallel alignment and gave dark to bright optical signal at the LC/aqueous interphase. Self-immobilization of thiosemicarbazone-based ligands on AHDPI-coated glass slide can be used to detect Hg<sup>2+</sup> ions with high sensitivity. The limit of detection with DT and IT was found to be 0.5 and 0.25 μmol L<sup>−1</sup>, respectively. Density functional studies were carried out to study the interaction of the thiosemicarbazone ligands with mercuric ions, resulting in highly negative binding energies of −1.55 and −2.06 eV for DT and IT with Hg<sup>2+</sup> ions, respectively. The chemical and thermal stability (up to 268 °C) of the AHDPI coated on glass slide made it reusable at least twice for sensor fabrication. This provides a quicker and cheaper alternative to traditional methods of sensor fabrication. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 12","pages":"1051-1062"},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the mechanical and thermal properties of aramid fibre reinforced with sawdust particulates in an epoxy matrix composite: a novel material for structural applications 研究在环氧基复合材料中使用锯屑颗粒增强芳纶纤维的机械和热性能:一种新型结构应用材料
IF 2.9 4区 化学
Polymer International Pub Date : 2024-07-26 DOI: 10.1002/pi.6685
Thandavamoorthy Raja, Yuvarajan Devarajan
{"title":"Study on the mechanical and thermal properties of aramid fibre reinforced with sawdust particulates in an epoxy matrix composite: a novel material for structural applications","authors":"Thandavamoorthy Raja,&nbsp;Yuvarajan Devarajan","doi":"10.1002/pi.6685","DOIUrl":"10.1002/pi.6685","url":null,"abstract":"<p>This study investigates the development and characterization of a novel composite material for structural applications, aiming to address the growing demand for lightweight, durable and versatile materials. The composite integrates aramid fibre reinforced with sawdust particulates within an epoxy matrix. Methodologically, the composite was fabricated using a hand layup process, ensuring even distribution and strong adhesion between components. Mechanical testing revealed significant enhancements in tensile strength (up to 135.29 MPa) and flexural strength (up to 136.92 MPa) with the inclusion of sawdust particulates, optimizing stress distribution and impact resistance. Hardness was also improved, peaking at a Rockwell hardness number of 94. Thermal analysis demonstrated moderate thermal conductivity (1.92 W mK<sup>−1</sup>) and a high heat deflection temperature (109 °C), indicating excellent thermal stability. SEM provided insights into the composite's microstructure, confirming uniform sawdust distribution and robust fibre–matrix adhesion. These findings underscore the potential of this composite for lightweight, durable and thermally stable structural applications. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 12","pages":"1063-1070"},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the relationship between natural frequency and residual strength and stiffness of cross‐ply laminate under cyclic loading 研究循环荷载下交叉层压板的固有频率与残余强度和刚度之间的关系
IF 3.2 4区 化学
Polymer International Pub Date : 2024-07-24 DOI: 10.1002/pi.6682
Pouya Valizadeh, Ahad Zabett, Jalil Rezaeepazhand
{"title":"Investigating the relationship between natural frequency and residual strength and stiffness of cross‐ply laminate under cyclic loading","authors":"Pouya Valizadeh, Ahad Zabett, Jalil Rezaeepazhand","doi":"10.1002/pi.6682","DOIUrl":"https://doi.org/10.1002/pi.6682","url":null,"abstract":"Predicting the fatigue life of wind turbine rotor blades is a challenging and crucial engineering task. This study investigates the correlation between modal parameters and the degradation of residual strength and tensile modulus in the cross‐ply glass epoxy laminate [0/90]<jats:sub>7</jats:sub> used in wind turbine blades under fatigue loading. The tensile and vibration characteristics were assessed, followed by constant amplitude fatigue tests at 35%, 43% and 55% of the ultimate tensile strength, with <jats:italic>R</jats:italic> = 0.1 and a frequency of 8 Hz. The modal analysis was performed on the cycled specimens at life fractions from 0.05 to 0.70 and residual modulus and strength were obtained. The results establish a well‐defined correlation between these residual mechanical properties and the natural frequency. Normalized residual strength, tensile modulus and natural frequency demonstrated similar behaviors during the fatigue life. An initial rapid decrease in the first tenth of the life fraction was observed, followed by minimal changes up to a life fraction of 0.7. The strong correlation between the first mode natural frequency and both the residual strength and the tensile <jats:italic>E</jats:italic>‐modulus provides a promising basis for developing accurate fatigue life prediction models for fiber‐reinforced composite structures. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"109 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of surfactant-assisted polycaprolactone/κ-carrageenan nanofibres 制备表面活性剂辅助聚己内酯/κ-卡拉胶纳米纤维
IF 2.9 4区 化学
Polymer International Pub Date : 2024-07-23 DOI: 10.1002/pi.6683
Vandana Kumari, Sukumar Roy, Wazed Ali, Samrat Mukhopadhyay, Bhuvanesh Gupta
{"title":"Preparation of surfactant-assisted polycaprolactone/κ-carrageenan nanofibres","authors":"Vandana Kumari,&nbsp;Sukumar Roy,&nbsp;Wazed Ali,&nbsp;Samrat Mukhopadhyay,&nbsp;Bhuvanesh Gupta","doi":"10.1002/pi.6683","DOIUrl":"10.1002/pi.6683","url":null,"abstract":"<p>The objective of this work was to fabricate nanofibres composed of polycaprolactone (PCL) and κ-carrageenan (kC) by employing an anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT). This study examined the role of the surfactant in PCL/kC/AOT (hybrid) nanofibre preparation using SEM, AFM, Fourier transform infrared spectroscopy, XRD and DSC. The wettability and water uptake percentage of the nanofibres were investigated. An antimicrobial study was conducted against bacterial strains using a colony-counting assay, and changes in bacterial morphology were monitored using TEM. The results demonstrated that the hybrid nanofibres had a uniform and smooth structure, which might be attributed to the improved compatibility between polymers in the presence of the surfactant. The incorporation of AOT in the matrix resulted in a reduction in the mean fibre diameter and surface roughness. The hybrid nanofibres increased water absorbency is evidence of their high hydrophilicity, which can be explained by the simultaneous impact of kC and AOT. The hybrid nanofibres exhibited effective activity against <i>Staphylococcus</i> a<i>ureus</i> and <i>Escherichia coli</i>. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 12","pages":"1041-1050"},"PeriodicalIF":2.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信