Enhancing degradability with polyanhydrides: synthesis and impact on morphology, molecular interactions, hydrophilicity and hydrolytic degradation of PLLA/PCL/CAB blend films

IF 2.9 4区 化学 Q2 POLYMER SCIENCE
Arisa Kongprayoon, Gareth Ross, Sararat Mahasaranon, James A Wilson, Paul D Topham, Brian J Tighe, Sukunya Ross
{"title":"Enhancing degradability with polyanhydrides: synthesis and impact on morphology, molecular interactions, hydrophilicity and hydrolytic degradation of PLLA/PCL/CAB blend films","authors":"Arisa Kongprayoon,&nbsp;Gareth Ross,&nbsp;Sararat Mahasaranon,&nbsp;James A Wilson,&nbsp;Paul D Topham,&nbsp;Brian J Tighe,&nbsp;Sukunya Ross","doi":"10.1002/pi.6748","DOIUrl":null,"url":null,"abstract":"<p>The degradation of polymer-based materials is crucial for their end-of-life management, particularly in biomedical applications where controlled degradation rates are essential. Addressing this need, this study explores the incorporation of newly designed polyanhydrides (PAs) into multicomponent blends to enhance hydrolytic biodegradation. Two distinct PAs – poly[(propionic anhydride)-<i>co</i>-(succinic anhydride)] (PASA) and poly[(propionic anhydride)-<i>co</i>-(sebacic anhydride)] (PASEA) – were synthesized through melt-condensation polymerization. These PAs were then incorporated into solution blend films composed of poly(<span>l</span>-lactide) (PLLA), poly(<i>ε</i>-caprolactone) (PCL) and cellulose acetate butyrate (CAB), aiming to serve as an accelerator for the hydrolytic degradation of films. The incorporation of PASA and PASEA into the PLLA/PCL/CAB blend films resulted in the formation of phase-separated domains and a notable shift of the carbonyl frequency band in the Fourier transform infrared spectra, indicating phase separation and intermolecular packing between homopolymers in the blend system. Significant changes in the molecular weight and surface morphology of the blend films with PAs were observed after 0, 3 and 6 months of storage. These observations confirmed the role of PASA and PASEA in accelerating through surface erosion, as evidenced by the presence of craze lines at both macrophase- and microphase-separated domains. This study highlights the potential of newly designed PA additives to enhance the degradation and stability of PLLA/PCL/CAB polymer-based film. Such enhancements are valuable for designing materials with controlled degradation rates, which is particularly important in biomedical applications where precise timing of degradation within the body is essential. © 2025 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 5","pages":"452-464"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6748","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The degradation of polymer-based materials is crucial for their end-of-life management, particularly in biomedical applications where controlled degradation rates are essential. Addressing this need, this study explores the incorporation of newly designed polyanhydrides (PAs) into multicomponent blends to enhance hydrolytic biodegradation. Two distinct PAs – poly[(propionic anhydride)-co-(succinic anhydride)] (PASA) and poly[(propionic anhydride)-co-(sebacic anhydride)] (PASEA) – were synthesized through melt-condensation polymerization. These PAs were then incorporated into solution blend films composed of poly(l-lactide) (PLLA), poly(ε-caprolactone) (PCL) and cellulose acetate butyrate (CAB), aiming to serve as an accelerator for the hydrolytic degradation of films. The incorporation of PASA and PASEA into the PLLA/PCL/CAB blend films resulted in the formation of phase-separated domains and a notable shift of the carbonyl frequency band in the Fourier transform infrared spectra, indicating phase separation and intermolecular packing between homopolymers in the blend system. Significant changes in the molecular weight and surface morphology of the blend films with PAs were observed after 0, 3 and 6 months of storage. These observations confirmed the role of PASA and PASEA in accelerating through surface erosion, as evidenced by the presence of craze lines at both macrophase- and microphase-separated domains. This study highlights the potential of newly designed PA additives to enhance the degradation and stability of PLLA/PCL/CAB polymer-based film. Such enhancements are valuable for designing materials with controlled degradation rates, which is particularly important in biomedical applications where precise timing of degradation within the body is essential. © 2025 Society of Chemical Industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信