Journal of Tissue Engineering and Regenerative Medicine最新文献

筛选
英文 中文
GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs gmp级微载体和自动化封闭工业规模细胞生产平台,用于培养msc
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-05 DOI: 10.1002/term.3341
Yuanyuan Zhang, Tao Na, Kehua Zhang, Yanping Yang, Huanye Xu, Lina Wei, Liming Xu, Xiaojun Yan, Wei Liu, Guangyang Liu, Bin Wang, Shufang Meng, Yanan Du
{"title":"GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs","authors":"Yuanyuan Zhang,&nbsp;Tao Na,&nbsp;Kehua Zhang,&nbsp;Yanping Yang,&nbsp;Huanye Xu,&nbsp;Lina Wei,&nbsp;Liming Xu,&nbsp;Xiaojun Yan,&nbsp;Wei Liu,&nbsp;Guangyang Liu,&nbsp;Bin Wang,&nbsp;Shufang Meng,&nbsp;Yanan Du","doi":"10.1002/term.3341","DOIUrl":"https://doi.org/10.1002/term.3341","url":null,"abstract":"<p>Efficient and large-scale expansion of mesenchymal stem/stromal cells (MSCs) has always been a formidable challenge to researchers in cell-based therapies and regenerative medicine. To reconcile major drawbacks of 2D planar culturing system, we innovatively developed an automated closed industrial scale cell production (ACISCP) platform based on GMP-grade microcarrier for culture of umbilical cord-mesenchymal stem/stromal cells (UCMSCs), in accordance with the criteria of stem cell bank. ACISCP system is a fully closed system, which employs different models of vivaSPIN bioreactors (CytoNiche Biotech, China) for scale-up cell culture and vivaPREP (CytoNiche Biotech, China) for automated cell harvesting and cell dosage preparation. To realize industrial scale expansion of UCMSCs, a three-stage expansion was conducted with 1 L, 5 and 15 L vivaSPIN bioreactors. Using 3D TableTrix<sup>®</sup> and ACISCP system, we inoculated 1.5 × 10<sup>7</sup> of UCMSCs into 1 L vivaSPIN bioreactor and finally scaled to two 15 L bioreactor. A final yield of 2.09 × 10<sup>10</sup> cells with an overall expansion factor of 1975 within 13 days. The cells were harvested, concentrated, washed and prepared automatically with vivaPREP. The entire process was realized with ACISCP platform and was totally enclosed. Critical quality attributes (CQA) assessments and release tests of MSCs, including sterility, safety, purity, viability, identity, stability and potency were performed accordingly. The quality of cells harvested from 3D culture on the ACISCP and conventional 2D planar culture counterpart has no significant difference. This study provides a bioprocess engineering platform, harnessing GMP-grade 3D TableTrix<sup>®</sup> microcarriers and ACISCP to achieve industrial-scale manufacturing of clinical-grade hMSCs.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"934-944"},"PeriodicalIF":3.3,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5709071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Conditioned medium of amniotic fluid-derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis 羊水基质细胞条件培养基通过增加祖细胞数量和血管生成来发挥骨合成代谢作用
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-07-12 DOI: 10.1002/term.3340
Min-Kyoung Song, Hyun Jin Sun, Sun Wook Cho
{"title":"Conditioned medium of amniotic fluid-derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis","authors":"Min-Kyoung Song,&nbsp;Hyun Jin Sun,&nbsp;Sun Wook Cho","doi":"10.1002/term.3340","DOIUrl":"https://doi.org/10.1002/term.3340","url":null,"abstract":"<p>A cell-free approach utilizing the paracrine effects of mesenchymal stromal cells is receiving attention in regenerative medicine. In the present study, we evaluated the effects of a conditioned medium of amniotic fluid-derived stromal cells (AFSC-CM) on bone metabolism. In mice, intraperitoneal injections of AFSC-CM increased bone mass and enhanced bone turnover. The precursor populations of myeloid and mesenchymal lineages, as well as endothelial cells in bone marrow, were also augmented by AFSC-CM administration. In an in vitro culture experiment, AFSC-CM increased osteoclast differentiation of bone marrow-derived macrophages, but had no significant effect on the osteogenic differentiation of preosteoblasts. However, AFSC-CM administration dramatically accelerated the migration and tube formation of endothelial cells, and a cytokine array showed that AFSC-CM contained many angiogenic factors. These results indicate that AFSC-CM exerts a bone anabolic effect by changing the bone marrow microenvironment, including angiogenesis and precursor expansion. Therefore, ameliorating marrow angiogenesis is a potential therapeutic strategy for bone regeneration, for which AFSCs can be a good cellular source.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"923-933"},"PeriodicalIF":3.3,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6196890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning 微流控纺丝技术3D打印具有多空心结构的非均质微纤维
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-07-08 DOI: 10.1002/term.3339
Wei Li, Kun Yao, Lingling Tian, Chang Xue, Xu Zhang, Xinghua Gao
{"title":"3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning","authors":"Wei Li,&nbsp;Kun Yao,&nbsp;Lingling Tian,&nbsp;Chang Xue,&nbsp;Xu Zhang,&nbsp;Xinghua Gao","doi":"10.1002/term.3339","DOIUrl":"https://doi.org/10.1002/term.3339","url":null,"abstract":"<p>Tissues with tubular structures play important roles in the human bodies, such as mass transport, nutrition exchange, and waste filtration. However, it remains a challenge to generate micro-scaffolds with well-defined luminal structure in biomedical field. In this study, we proposed a novel method to fabricate multi-component microfibers with multi-hollow structure via microfluidic spinning, which can subsequently be integrated with 3D printing for tissue-like block assembling. To achieve this goal, we fabricated a microchip using a 3D printed template with adjustable heights. Utilizing this microchip, we successfully generated the Calcium alginate microfibers with multi-components and defined hollow structures in a controllable manner. Then this microfluidic spinning method was integrated with a 3D mobile platform to assemble the microfibers into a grid-like 3D architecture. The resulted 3D scaffolds exhibited good organization and maintained the hollow structure of the fibers. Furthermore, we successfully developed a bronchus model utilizing this strategy by loading pulmonary bronchial epithelium cells and endothelial cells into microfibers with two hollow structures. The present strategy provides a potential platform to rebuild the lumen-like tissues using microfibers.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"913-922"},"PeriodicalIF":3.3,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6152560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The intra-articular injection of adipose-derived stem cells decreases pain and reduces inflammation in knee osteoarthritis, with or without the addition of platelet-rich plasma also improves functionality 关节内注射脂肪来源的干细胞可以减轻膝关节骨关节炎的疼痛和炎症,无论是否添加富含血小板的血浆也可以改善功能
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-07-07 DOI: 10.1002/term.3337
Laynna Carvalho Schweich-Adami, Roberto Antoniolli da Silva, Jovino Nogueira da Silva Menezes, Adrivanio Baranoski, Candida Aparecida Leite Kassuya, Luana Bernardi, Rodrigo Juliano Oliveira, Andréia Concei??o Milan Brochado Antoniolli-Silva
{"title":"The intra-articular injection of adipose-derived stem cells decreases pain and reduces inflammation in knee osteoarthritis, with or without the addition of platelet-rich plasma also improves functionality","authors":"Laynna Carvalho Schweich-Adami,&nbsp;Roberto Antoniolli da Silva,&nbsp;Jovino Nogueira da Silva Menezes,&nbsp;Adrivanio Baranoski,&nbsp;Candida Aparecida Leite Kassuya,&nbsp;Luana Bernardi,&nbsp;Rodrigo Juliano Oliveira,&nbsp;Andréia Concei??o Milan Brochado Antoniolli-Silva","doi":"10.1002/term.3337","DOIUrl":"https://doi.org/10.1002/term.3337","url":null,"abstract":"<p>The increase of individuals with Osteoarthritis (OA) has generated an increase in public spending in the treatments, which are still not that effective. So, the purpose of this study was to analyze and compare four types of interventions: platelet-rich plasma (PRP), adipose-derived stem cells (ADSCs), ADSCs + PRP and the standard surgical video arthroscopy (All groups passed through standard arthroscopy before intervention). The evaluation was performed by applying the questionnaires Western Ontario McMaster Universities, Short Form Health Survey 36 and Visual Analog Pain Scale, also by analyzing the synovial fluid (inflammatory cytokines, enzymatic, colorimetric and viscosity analysis), this evaluation happened in two moments: before the surgical procedures and after 6 months of the interventions and also was made a comparison to standard arthroscopy. The questionnaires results showed a greater improvement in the scores of the domains analyzed in the ADSCs + PRP group, followed by the ADSCs and PRP group. In the evaluation of inflammatory cytokines, there was a significant reduction in the cytokine IL-1b only in the ADSCs + PRP group (46%) and ADSCs (31%), of IL-6 in the ADSCs + PRP group (72%), of IL-8 in the ADSCs + PRP group (50%) and ADSCs (31%), and TNF in the ADSCs + PRP group (46%). There was also a significant increase in the amount of total proteins (79%) in the control group and polymorphonuclear cells (47%) in the ADSCs + PRP group. Taking all the results into account, we infer that therapies with ADSCs + PRP and only ADSCs are safe and effective over 6 months for the improvement of pain, functional capacity and joint inflammation in volunteers with OA. It is also considered that the use of ADSCs + PRP, particularly, is a promising alternative to help manage this disease, due to the better results presented among the four propose interventions.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"900-912"},"PeriodicalIF":3.3,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6138951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Platelet-rich plasma in the treatment of scars, to suggest or not to suggest? A systematic review and meta-analysis 富血小板血浆在疤痕治疗中,建议还是不建议?系统回顾和荟萃分析
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-07-06 DOI: 10.1002/term.3338
Zahra Ebrahimi, Yousef Alimohamadi, Majid Janani, Pardis Hejazi, Mahboobeh Kamali, Azadeh Goodarzi
{"title":"Platelet-rich plasma in the treatment of scars, to suggest or not to suggest? A systematic review and meta-analysis","authors":"Zahra Ebrahimi,&nbsp;Yousef Alimohamadi,&nbsp;Majid Janani,&nbsp;Pardis Hejazi,&nbsp;Mahboobeh Kamali,&nbsp;Azadeh Goodarzi","doi":"10.1002/term.3338","DOIUrl":"https://doi.org/10.1002/term.3338","url":null,"abstract":"<p>Despite the rising trend for applying platelet-rich plasma (PRP) in the management of various types of scars, there is no convincing evidence supporting its use. This motivated us to review the randomized clinical trials that examine the effectiveness and safety of PRP, alone or in combination with other methods, for the management of atrophic or hypertrophic/keloidal scars. The Web of Science, Scopus, Google Scholar, and Cochrane Library databases were systematically searched until September 1<sup>st</sup>, 2020. Thirteen clinical trials were enrolled in the meta-analysis, and 10 more were reviewed for their results. The random effect meta-analysis method was used to assess the effect size of each outcome for each treatment type, and I<sup>2</sup> was used to calculate the statistical heterogeneity between the studies. Patients treated with PRP experienced an overall response rate of 23%, comparable to the results seen with laser or micro-needling (22% and 23%, respectively) When used alone, moderate improvement was the most frequently observed degree of response with PRP (36%) whereas, when added to laser or micro-needling, most patients experienced marked (33%, 43%, respectively) or excellent (32% and 23%, respectively) results. Concerning the hypertrophic/keloid scars, the only study meeting the required criteria reported a better improvement and fewer adverse effects when PRP was added to the intralesional corticosteroids. Platelet-rich plasma appears to be a safe and effective treatment for various types of atrophic scars. In addition, when added to ablative lasers or micro-needling, it seems to considerably add to the efficacy of treatment and reduce the side effects.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"875-899"},"PeriodicalIF":3.3,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6094606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Modeling the human heart ex vivo—current possibilities and strive for future applications 建模人类心脏离体电流的可能性,并争取未来的应用
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-06-24 DOI: 10.1002/term.3335
Ewelina Ka?u?na, Agnieszka Nadel, Agnieszka Zimna, Natalia Rozwadowska, Tomasz Kolanowski
{"title":"Modeling the human heart ex vivo—current possibilities and strive for future applications","authors":"Ewelina Ka?u?na,&nbsp;Agnieszka Nadel,&nbsp;Agnieszka Zimna,&nbsp;Natalia Rozwadowska,&nbsp;Tomasz Kolanowski","doi":"10.1002/term.3335","DOIUrl":"https://doi.org/10.1002/term.3335","url":null,"abstract":"<p>The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"853-874"},"PeriodicalIF":3.3,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5791264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury 姜黄素缓释膜促进海绵状神经损伤大鼠勃起功能和阴茎康复
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-06-18 DOI: 10.1002/term.3334
Luchen Yang, Zhengju Ren, Zhenghuan Liu, Zhufeng Peng, Pan Song, Jing Zhou, Linchun Wang, Junhao Chen, Qiang Dong
{"title":"Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury","authors":"Luchen Yang,&nbsp;Zhengju Ren,&nbsp;Zhenghuan Liu,&nbsp;Zhufeng Peng,&nbsp;Pan Song,&nbsp;Jing Zhou,&nbsp;Linchun Wang,&nbsp;Junhao Chen,&nbsp;Qiang Dong","doi":"10.1002/term.3334","DOIUrl":"https://doi.org/10.1002/term.3334","url":null,"abstract":"Male erectile dysfunction (ED) caused by cavernous nerve injury is a common complication of pelvic surgery, radiotherapy, transurethral surgery or other operations. However, clinical treatment for iatrogenic or traumatic male ED is difficult and not satisfactory. Many studies have shown that curcumin can promote the repair and regeneration of peripheral nerves; however, whether curcumin can rescue cavernous nerve injury is unknown, and the poor bioavailability of curcumin limits its application in vivo. Hence, the study was conducted. A curved slow‐release membrane was produced, and the properties were examined. In addition, the effects of the curcumin slow‐release membrane on cavernous nerve‐injured SD rats were studied. We found that polylactic acid‐glycolic acid‐polyethylene glycol (PLGA‐PEG) can be used as a good carrier material for curcumin, and curcumin‐loaded PLGA‐PEG membranes can effectively rescue the cavernous nerve in SD rats, restore the continuity of the cavernous nerve, and increase the expression of nNOS mRNA and proteins in penile tissue, which can improve the penile erectile function of injured SD rats, reduce the degree of penile tissue fibrosis, and effectively promote penis rehabilitation. The curcumin slow‐release membrane is proposed to be a new therapeutic approach for penile rehabilitation of cavernous nerve injury.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 9","pages":"836-849"},"PeriodicalIF":3.3,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5747529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A concise review of the orofacial mesenchymal stromal cells as a novel therapy for neurological diseases and injuries 口面间充质间质细胞作为神经系统疾病和损伤的新疗法的简要综述
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-06-18 DOI: 10.1002/term.3333
Zhili Dong, Liping Wu, Lu Zhao
{"title":"A concise review of the orofacial mesenchymal stromal cells as a novel therapy for neurological diseases and injuries","authors":"Zhili Dong,&nbsp;Liping Wu,&nbsp;Lu Zhao","doi":"10.1002/term.3333","DOIUrl":"https://doi.org/10.1002/term.3333","url":null,"abstract":"<p>Orofacial mesenchymal stromal cells (OFMSCs) are mesenchymal stromal cells isolated from the oral and facial regions, which possess typical mesenchymal stromal cell features such as self-renewing, multilineage differentiation, and immunoregulatory properties. Recently, increasing studies have been carried out on the neurotrophic and neuroregenerative properties of OFMSCs as well as their potential to treat neurological diseases. In this review, we summarize the current evidence and discuss the prospects regarding the therapeutic potential of OFMSCs as a new approach to treat different neurological diseases and injuries.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 9","pages":"775-787"},"PeriodicalIF":3.3,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5919281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning 间充质干细胞陪伴高效工程化人耳软骨
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-06-11 DOI: 10.1002/term.3332
Xue Dong, Carly Askinas, Jongkil Kim, John E. Sherman, Lawrence J. Bonassar, Jason A. Spector
{"title":"Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning","authors":"Xue Dong,&nbsp;Carly Askinas,&nbsp;Jongkil Kim,&nbsp;John E. Sherman,&nbsp;Lawrence J. Bonassar,&nbsp;Jason A. Spector","doi":"10.1002/term.3332","DOIUrl":"https://doi.org/10.1002/term.3332","url":null,"abstract":"<p>A major challenge to the clinical translation of tissue-engineered ear scaffolds for ear reconstruction is the limited auricular chondrocyte (hAuC) yield available from patients. Starting with a relatively small number of chondrocytes in culture results in dedifferentiation and loss of phenotype with subsequent expansion. To significantly decrease the number of chondrocytes required for human elastic cartilage engineering, we co-cultured human mesenchymal stem cells (hMSCs) with HAuCs to promote healthy elastic cartilage formation. HAuCs along with human bone marrow-derived hMSCs were encapsulated into 1% Type I collagen at 25 million/mL total cell density with different ratios (HAuCs/hMSCs: 10/90, 25/75, 50/50) and then injected into customized 3D-printed polylactic acid (PLA) ridged external scaffolds, which simulate the shape of the auricular helical rim, and implanted subcutaneously in nude rats for 1, 3 and 6 months. The explanted constructs demonstrated near complete volume preservation and topography maintenance of the ridged “helical” feature after 6 months with all ratios. Cartilaginous appearing tissue formed within scaffolds by 3 months, verified by histologic analysis demonstrating mature elastic cartilage within the constructs with chondrocytes seen in lacunae within a Type II collagen and proteoglycan-enriched matrix, and surrounded by a neoperichondrial external layer. Compressive mechanical properties comparable to human elastic cartilage were achieved after 6 months. Co-implantation of hAuCs and hMSCs in collagen within an external scaffold efficiently produced shaped human elastic cartilage without volume loss even when hAuC comprised only 10% of the implanted cell population, marking a crucial step toward the clinical translation of auricular tissue engineering.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 9","pages":"825-835"},"PeriodicalIF":3.3,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6192696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study 低强度脉冲超声刺激细胞种子三维杂交支架作为半月板再生新策略的影响:一项体外研究
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-06-11 DOI: 10.1002/term.3331
Melika Babaei, Nima Jamshidi, Farshad Amiri, Mohammad Rafienia
{"title":"Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study","authors":"Melika Babaei,&nbsp;Nima Jamshidi,&nbsp;Farshad Amiri,&nbsp;Mohammad Rafienia","doi":"10.1002/term.3331","DOIUrl":"https://doi.org/10.1002/term.3331","url":null,"abstract":"<p>Menisci are fibrocartilaginous structures in the knee joint with an inadequate regenerative capacity, which causes low healing potential and further leads to osteoarthritis. Recently, three-dimensional (3D) printing techniques and ultrasound treatment have gained plenty of attention for meniscus tissue engineering. The present study investigates the effectiveness of low-intensity pulsed ultrasound stimulations (LIPUS) on the proliferation, viability, morphology, and gene expression of the chondrocytes seeded on 3D printed polyurethane scaffolds dip-coated with gellan gum, hyaluronic acid, and glucosamine. LIPUS stimulation was performed at 100, 200, and 300 mW/cm<sup>2</sup> intensities for 20 min/day. A faster gap closure (78.08 ± 2.56%) in the migration scratch assay was observed in the 200 mW/cm<sup>2</sup> group after 24 h. Also, inverted microscopic and scanning electron microscopic images showed no cell morphology changes during LIPUS exposure at different intensities. The 3D cultured chondrocytes under LIPUS treatment revealed a promotion in cell proliferation rate and viability as the intensity doses increased. Additionally, LIPUS could stimulate chondrocytes to overexpress the aggrecan and collagen II genes and improve their chondrogenic phenotype. This study recommends that the combination of LIPUS treatment and 3D hybrid scaffolds can be considered as a valuable treatment for meniscus regeneration based on our in vitro data.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 9","pages":"812-824"},"PeriodicalIF":3.3,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6192695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信