Modeling the human heart ex vivo—current possibilities and strive for future applications

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ewelina Ka?u?na, Agnieszka Nadel, Agnieszka Zimna, Natalia Rozwadowska, Tomasz Kolanowski
{"title":"Modeling the human heart ex vivo—current possibilities and strive for future applications","authors":"Ewelina Ka?u?na,&nbsp;Agnieszka Nadel,&nbsp;Agnieszka Zimna,&nbsp;Natalia Rozwadowska,&nbsp;Tomasz Kolanowski","doi":"10.1002/term.3335","DOIUrl":null,"url":null,"abstract":"<p>The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"853-874"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3335","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.

建模人类心脏离体电流的可能性,并争取未来的应用
人体心脏的高器官规格与其损伤后的功能恢复成反比。诱导多能干细胞衍生心肌细胞(iPSC-CMs)的发现加速了人类心脏再生和生理学的研究。然而,由于iPSC-CMs的不成熟,它们远不能成为成人心脏生理学的代表性模型。因此,许多实验室努力通过工程方法将iPSC-CMs构建成复杂和先进的平台,以获得心脏组织。通过使用iPSC-CMs并将其放置在3D培养物中,可以获得具有潜在类似成人心脏生理功能的人类心肌,同时保持在体外。在这里,我们试图描述在体外或离体模型中心肌的现有例子,并讨论进一步发展这种结构的潜在选择。这将是最终获得完整的心脏组织模拟器官及其未来在药物开发、治疗方法测试、临床前研究和临床应用中的关键一步。这篇综述的特别目的是汇编先进人类心脏组织的可用模型,供科学家考虑哪种模型最适合他们的研究需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信