明胶-甲基丙烯酰水凝胶三维细胞培养中氧可用性及自然和人工氧梯度产生的研究

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Carola Schmitz, Iliyana Pepelanova, Christian Ude, Antonina Lavrentieva
{"title":"明胶-甲基丙烯酰水凝胶三维细胞培养中氧可用性及自然和人工氧梯度产生的研究","authors":"Carola Schmitz,&nbsp;Iliyana Pepelanova,&nbsp;Christian Ude,&nbsp;Antonina Lavrentieva","doi":"10.1002/term.3344","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"977-986"},"PeriodicalIF":3.1000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3344","citationCount":"0","resultStr":"{\"title\":\"Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture\",\"authors\":\"Carola Schmitz,&nbsp;Iliyana Pepelanova,&nbsp;Christian Ude,&nbsp;Antonina Lavrentieva\",\"doi\":\"10.1002/term.3344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 11\",\"pages\":\"977-986\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3344\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3344","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)培养平台允许创建细胞模型,更接近于活体细胞行为。因此,3D细胞培养平台已经开始在许多领域取代传统的二维(2D)培养技术。除了3D培养的优势之外,也存在一些挑战:3D培养通常会导致微环境不均匀,因此构建体内每个细胞的培养条件都是独特的。这就限制了在三维环境中对单胞状态的分析和精确控制。在这项工作中,我们通过探索在细胞水平上使用缺氧报告细胞监测明胶甲基丙烯酰(GelMA) 3D水凝胶培养中的氧浓度的方法,并使用非侵入性光学氧传感点在结构内部深处监测氧浓度,从而解决了这些挑战。我们可以证明,在较软的gelma水凝胶中,氧限制的出现更为突出,这使得细胞更好地扩散。除了展示在水凝胶结构中可视化氧气可用性的新颖或空间分辨率技术外,我们还描述了一种使用3D打印流过室在整个结构中创建稳定和受控氧气梯度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture

Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信