{"title":"姜黄素缓释膜促进海绵状神经损伤大鼠勃起功能和阴茎康复","authors":"Luchen Yang, Zhengju Ren, Zhenghuan Liu, Zhufeng Peng, Pan Song, Jing Zhou, Linchun Wang, Junhao Chen, Qiang Dong","doi":"10.1002/term.3334","DOIUrl":null,"url":null,"abstract":"Male erectile dysfunction (ED) caused by cavernous nerve injury is a common complication of pelvic surgery, radiotherapy, transurethral surgery or other operations. However, clinical treatment for iatrogenic or traumatic male ED is difficult and not satisfactory. Many studies have shown that curcumin can promote the repair and regeneration of peripheral nerves; however, whether curcumin can rescue cavernous nerve injury is unknown, and the poor bioavailability of curcumin limits its application in vivo. Hence, the study was conducted. A curved slow‐release membrane was produced, and the properties were examined. In addition, the effects of the curcumin slow‐release membrane on cavernous nerve‐injured SD rats were studied. We found that polylactic acid‐glycolic acid‐polyethylene glycol (PLGA‐PEG) can be used as a good carrier material for curcumin, and curcumin‐loaded PLGA‐PEG membranes can effectively rescue the cavernous nerve in SD rats, restore the continuity of the cavernous nerve, and increase the expression of nNOS mRNA and proteins in penile tissue, which can improve the penile erectile function of injured SD rats, reduce the degree of penile tissue fibrosis, and effectively promote penis rehabilitation. The curcumin slow‐release membrane is proposed to be a new therapeutic approach for penile rehabilitation of cavernous nerve injury.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 9","pages":"836-849"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury\",\"authors\":\"Luchen Yang, Zhengju Ren, Zhenghuan Liu, Zhufeng Peng, Pan Song, Jing Zhou, Linchun Wang, Junhao Chen, Qiang Dong\",\"doi\":\"10.1002/term.3334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Male erectile dysfunction (ED) caused by cavernous nerve injury is a common complication of pelvic surgery, radiotherapy, transurethral surgery or other operations. However, clinical treatment for iatrogenic or traumatic male ED is difficult and not satisfactory. Many studies have shown that curcumin can promote the repair and regeneration of peripheral nerves; however, whether curcumin can rescue cavernous nerve injury is unknown, and the poor bioavailability of curcumin limits its application in vivo. Hence, the study was conducted. A curved slow‐release membrane was produced, and the properties were examined. In addition, the effects of the curcumin slow‐release membrane on cavernous nerve‐injured SD rats were studied. We found that polylactic acid‐glycolic acid‐polyethylene glycol (PLGA‐PEG) can be used as a good carrier material for curcumin, and curcumin‐loaded PLGA‐PEG membranes can effectively rescue the cavernous nerve in SD rats, restore the continuity of the cavernous nerve, and increase the expression of nNOS mRNA and proteins in penile tissue, which can improve the penile erectile function of injured SD rats, reduce the degree of penile tissue fibrosis, and effectively promote penis rehabilitation. The curcumin slow‐release membrane is proposed to be a new therapeutic approach for penile rehabilitation of cavernous nerve injury.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 9\",\"pages\":\"836-849\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3334\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3334","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury
Male erectile dysfunction (ED) caused by cavernous nerve injury is a common complication of pelvic surgery, radiotherapy, transurethral surgery or other operations. However, clinical treatment for iatrogenic or traumatic male ED is difficult and not satisfactory. Many studies have shown that curcumin can promote the repair and regeneration of peripheral nerves; however, whether curcumin can rescue cavernous nerve injury is unknown, and the poor bioavailability of curcumin limits its application in vivo. Hence, the study was conducted. A curved slow‐release membrane was produced, and the properties were examined. In addition, the effects of the curcumin slow‐release membrane on cavernous nerve‐injured SD rats were studied. We found that polylactic acid‐glycolic acid‐polyethylene glycol (PLGA‐PEG) can be used as a good carrier material for curcumin, and curcumin‐loaded PLGA‐PEG membranes can effectively rescue the cavernous nerve in SD rats, restore the continuity of the cavernous nerve, and increase the expression of nNOS mRNA and proteins in penile tissue, which can improve the penile erectile function of injured SD rats, reduce the degree of penile tissue fibrosis, and effectively promote penis rehabilitation. The curcumin slow‐release membrane is proposed to be a new therapeutic approach for penile rehabilitation of cavernous nerve injury.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.